/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 308 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 78 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false union :: empty:edge -> empty:edge -> empty:edge empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge reach :: 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_1 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_2 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: eq, union, reach They will be analysed ascendingly in the following order: eq < reach union < reach ---------------------------------------- (6) Obligation: Innermost TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false union :: empty:edge -> empty:edge -> empty:edge empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge reach :: 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_1 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_2 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: eq, union, reach They will be analysed ascendingly in the following order: eq < reach union < reach ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Induction Base: eq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false union :: empty:edge -> empty:edge -> empty:edge empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge reach :: 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_1 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_2 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: eq, union, reach They will be analysed ascendingly in the following order: eq < reach union < reach ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false union :: empty:edge -> empty:edge -> empty:edge empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge reach :: 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_1 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_2 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: union, reach They will be analysed ascendingly in the following order: union < reach ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: union(gen_empty:edge5_0(n494_0), gen_empty:edge5_0(b)) -> gen_empty:edge5_0(+(n494_0, b)), rt in Omega(1 + n494_0) Induction Base: union(gen_empty:edge5_0(0), gen_empty:edge5_0(b)) ->_R^Omega(1) gen_empty:edge5_0(b) Induction Step: union(gen_empty:edge5_0(+(n494_0, 1)), gen_empty:edge5_0(b)) ->_R^Omega(1) edge(0', 0', union(gen_empty:edge5_0(n494_0), gen_empty:edge5_0(b))) ->_IH edge(0', 0', gen_empty:edge5_0(+(b, c495_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: eq(0', 0') -> true eq(0', s(x)) -> false eq(s(x), 0') -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false or :: true:false -> true:false -> true:false union :: empty:edge -> empty:edge -> empty:edge empty :: empty:edge edge :: 0':s -> 0':s -> empty:edge -> empty:edge reach :: 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_1 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false if_reach_2 :: true:false -> 0':s -> 0':s -> empty:edge -> empty:edge -> true:false hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_empty:edge3_0 :: empty:edge gen_0':s4_0 :: Nat -> 0':s gen_empty:edge5_0 :: Nat -> empty:edge Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) union(gen_empty:edge5_0(n494_0), gen_empty:edge5_0(b)) -> gen_empty:edge5_0(+(n494_0, b)), rt in Omega(1 + n494_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_empty:edge5_0(0) <=> empty gen_empty:edge5_0(+(x, 1)) <=> edge(0', 0', gen_empty:edge5_0(x)) The following defined symbols remain to be analysed: reach