/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 2 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 368 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 170 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 765 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 250 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 2073 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 102 ms] (32) CpxRNTS (33) FinalProof [FINISHED, 0 ms] (34) BOUNDS(1, n^3) (35) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CpxTRS (37) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (38) typed CpxTrs (39) OrderProof [LOWER BOUND(ID), 0 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 317 ms] (42) BEST (43) proven lower bound (44) LowerBoundPropagationProof [FINISHED, 0 ms] (45) BOUNDS(n^1, INF) (46) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(0, y) -> 0 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0 if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) [1] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) [1] if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) [1] if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) [1] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) [1] if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) [1] if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) [1] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s if_minus :: true:false -> 0:s -> 0:s -> 0:s gcd :: 0:s -> 0:s -> 0:s if_gcd :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: gcd_2 if_gcd_3 (c) The following functions are completely defined: le_2 minus_2 if_minus_3 Due to the following rules being added: if_minus(v0, v1, v2) -> 0 [0] And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) [1] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) [1] if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) [1] if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) [1] if_minus(v0, v1, v2) -> 0 [0] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s if_minus :: true:false -> 0:s -> 0:s -> 0:s gcd :: 0:s -> 0:s -> 0:s if_gcd :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), 0) -> if_minus(false, s(x), 0) [2] minus(s(x), s(y')) -> if_minus(le(x, y'), s(x), s(y')) [2] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(0)) -> if_gcd(true, s(x), s(0)) [2] gcd(s(0), s(s(x'))) -> if_gcd(false, s(0), s(s(x'))) [2] gcd(s(s(y'')), s(s(x''))) -> if_gcd(le(x'', y''), s(s(y'')), s(s(x''))) [2] if_gcd(true, s(0), s(y)) -> gcd(0, s(y)) [2] if_gcd(true, s(s(x1)), s(y)) -> gcd(if_minus(le(s(x1), y), s(x1), y), s(y)) [2] if_gcd(false, s(x), s(0)) -> gcd(0, s(x)) [2] if_gcd(false, s(x), s(s(x2))) -> gcd(if_minus(le(s(x2), x), s(x2), x), s(x)) [2] if_minus(v0, v1, v2) -> 0 [0] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s if_minus :: true:false -> 0:s -> 0:s -> 0:s gcd :: 0:s -> 0:s -> 0:s if_gcd :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 1 false => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> y :|: y >= 0, z = 0, z' = y gcd(z, z') -{ 2 }-> if_gcd(le(x'', y''), 1 + (1 + y''), 1 + (1 + x'')) :|: z' = 1 + (1 + x''), z = 1 + (1 + y''), y'' >= 0, x'' >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + x, 1 + 0) :|: x >= 0, z' = 1 + 0, z = 1 + x gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + x')) :|: z' = 1 + (1 + x'), z = 1 + 0, x' >= 0 gcd(z, z') -{ 1 }-> 1 + x :|: x >= 0, z = 1 + x, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + x1, y), 1 + x1, y), 1 + y) :|: x1 >= 0, z' = 1 + (1 + x1), z = 1, y >= 0, z'' = 1 + y if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + x2, x), 1 + x2, x), 1 + x) :|: z' = 1 + x, x >= 0, z'' = 1 + (1 + x2), z = 0, x2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + x) :|: z' = 1 + x, x >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + y) :|: z = 1, y >= 0, z'' = 1 + y, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z' = 1 + x, z'' = y, z = 1, x >= 0, y >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0, z = 0 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 2 }-> if_minus(le(x, y'), 1 + x, 1 + y') :|: x >= 0, y' >= 0, z = 1 + x, z' = 1 + y' minus(z, z') -{ 2 }-> if_minus(0, 1 + x, 0) :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) :|: z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z'' - 2), z' - 1), 1 + (z'' - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { le } { minus, if_minus } { gcd, if_gcd } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) :|: z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z'' - 2), z' - 1), 1 + (z'' - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {le}, {minus,if_minus}, {gcd,if_gcd} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) :|: z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z'' - 2), z' - 1), 1 + (z'' - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {le}, {minus,if_minus}, {gcd,if_gcd} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) :|: z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z'' - 2), z' - 1), 1 + (z'' - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {le}, {minus,if_minus}, {gcd,if_gcd} Previous analysis results are: le: runtime: ?, size: O(1) [1] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: le after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 }-> if_gcd(le(z' - 2, z - 2), 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z' - 2), z'' - 1), 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) :|: z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(if_minus(le(1 + (z'' - 2), z' - 1), 1 + (z'' - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {minus,if_minus}, {gcd,if_gcd} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s'', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(if_minus(s1, 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) :|: s1 >= 0, s1 <= 1, z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(if_minus(s2, 1 + (z'' - 2), z' - 1), 1 + (z' - 1)) :|: s2 >= 0, s2 <= 1, z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> if_minus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {minus,if_minus}, {gcd,if_gcd} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z Computed SIZE bound using CoFloCo for: if_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s'', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(if_minus(s1, 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) :|: s1 >= 0, s1 <= 1, z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(if_minus(s2, 1 + (z'' - 2), z' - 1), 1 + (z' - 1)) :|: s2 >= 0, s2 <= 1, z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> if_minus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {minus,if_minus}, {gcd,if_gcd} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: ?, size: O(n^1) [z] if_minus: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 4*z + z*z' + 2*z' Computed RUNTIME bound using KoAT for: if_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 6 + 4*z' + z'*z'' + z'' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s'', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 3 + z'' }-> gcd(if_minus(s1, 1 + (z' - 2), z'' - 1), 1 + (z'' - 1)) :|: s1 >= 0, s1 <= 1, z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 3 + z' }-> gcd(if_minus(s2, 1 + (z'' - 2), z' - 1), 1 + (z' - 1)) :|: s2 >= 0, s2 <= 1, z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> if_minus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {gcd,if_gcd} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s'', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 5 + 3*z' + z'*z'' + z'' }-> gcd(s6, 1 + (z'' - 1)) :|: s6 >= 0, s6 <= 1 + (z' - 2), s1 >= 0, s1 <= 1, z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 5 + z' + z'*z'' + 3*z'' }-> gcd(s7, 1 + (z' - 1)) :|: s7 >= 0, s7 <= 1 + (z'' - 2), s2 >= 0, s2 <= 1, z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 5 + 4*z' + z'*z'' + z'' }-> 1 + s5 :|: s5 >= 0, s5 <= z' - 1, z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 8 + 4*z }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s4 :|: s4 >= 0, s4 <= 1 + (z - 1), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {gcd,if_gcd} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' Computed SIZE bound using KoAT for: if_gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s'', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 5 + 3*z' + z'*z'' + z'' }-> gcd(s6, 1 + (z'' - 1)) :|: s6 >= 0, s6 <= 1 + (z' - 2), s1 >= 0, s1 <= 1, z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 5 + z' + z'*z'' + 3*z'' }-> gcd(s7, 1 + (z' - 1)) :|: s7 >= 0, s7 <= 1 + (z'' - 2), s2 >= 0, s2 <= 1, z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 5 + 4*z' + z'*z'' + z'' }-> 1 + s5 :|: s5 >= 0, s5 <= z' - 1, z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 8 + 4*z }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s4 :|: s4 >= 0, s4 <= 1 + (z - 1), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: {gcd,if_gcd} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] gcd: runtime: ?, size: O(n^1) [z + z'] if_gcd: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 2 + 58*z + 52*z*z' + 12*z*z'^2 + 26*z^2 + 12*z^2*z' + 4*z^3 + 58*z' + 26*z'^2 + 4*z'^3 Computed RUNTIME bound using KoAT for: if_gcd after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 8 + 98*z' + 58*z'*z'' + 24*z'*z''^2 + 54*z'^2 + 24*z'^2*z'' + 12*z'^3 + 98*z'' + 54*z''^2 + 12*z''^3 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 gcd(z, z') -{ 2 + z }-> if_gcd(s'', 1 + (1 + (z - 2)), 1 + (1 + (z' - 2))) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 2 >= 0 gcd(z, z') -{ 2 }-> if_gcd(1, 1 + (z - 1), 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 gcd(z, z') -{ 2 }-> if_gcd(0, 1 + 0, 1 + (1 + (z' - 2))) :|: z = 1 + 0, z' - 2 >= 0 gcd(z, z') -{ 1 }-> 1 + (z - 1) :|: z - 1 >= 0, z' = 0 if_gcd(z, z', z'') -{ 5 + 3*z' + z'*z'' + z'' }-> gcd(s6, 1 + (z'' - 1)) :|: s6 >= 0, s6 <= 1 + (z' - 2), s1 >= 0, s1 <= 1, z' - 2 >= 0, z = 1, z'' - 1 >= 0 if_gcd(z, z', z'') -{ 5 + z' + z'*z'' + 3*z'' }-> gcd(s7, 1 + (z' - 1)) :|: s7 >= 0, s7 <= 1 + (z'' - 2), s2 >= 0, s2 <= 1, z' - 1 >= 0, z = 0, z'' - 2 >= 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 0, z'' = 1 + 0 if_gcd(z, z', z'') -{ 2 }-> gcd(0, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' = 1 + 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 5 + 4*z' + z'*z'' + z'' }-> 1 + s5 :|: s5 >= 0, s5 <= z' - 1, z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 8 + 4*z }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s4 :|: s4 >= 0, s4 <= 1 + (z - 1), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 Function symbols to be analyzed: Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] gcd: runtime: O(n^3) [2 + 58*z + 52*z*z' + 12*z*z'^2 + 26*z^2 + 12*z^2*z' + 4*z^3 + 58*z' + 26*z'^2 + 4*z'^3], size: O(n^1) [z + z'] if_gcd: runtime: O(n^3) [8 + 98*z' + 58*z'*z'' + 24*z'*z''^2 + 54*z'^2 + 24*z'^2*z'' + 12*z'^3 + 98*z'' + 54*z''^2 + 12*z''^3], size: O(n^1) [z' + z''] ---------------------------------------- (33) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (34) BOUNDS(1, n^3) ---------------------------------------- (35) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (36) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0', y) -> y gcd(s(x), 0') -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (37) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (38) Obligation: Innermost TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0', y) -> y gcd(s(x), 0') -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s if_minus :: true:false -> 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s if_gcd :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (39) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, minus, gcd They will be analysed ascendingly in the following order: le < minus le < gcd minus < gcd ---------------------------------------- (40) Obligation: Innermost TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0', y) -> y gcd(s(x), 0') -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s if_minus :: true:false -> 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s if_gcd :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, minus, gcd They will be analysed ascendingly in the following order: le < minus le < gcd minus < gcd ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Complex Obligation (BEST) ---------------------------------------- (43) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0', y) -> y gcd(s(x), 0') -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s if_minus :: true:false -> 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s if_gcd :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, minus, gcd They will be analysed ascendingly in the following order: le < minus le < gcd minus < gcd ---------------------------------------- (44) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (45) BOUNDS(n^1, INF) ---------------------------------------- (46) Obligation: Innermost TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0', y) -> y gcd(s(x), 0') -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s if_minus :: true:false -> 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s if_gcd :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus, gcd They will be analysed ascendingly in the following order: minus < gcd