/export/starexec/sandbox2/solver/bin/starexec_run_tct_rci /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^3)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^3)) + Considered Problem: - Strict TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1} / {add/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,reverse,shuffle} and constructors {add,nil} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1} / {add/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,reverse,shuffle} and constructors {add,nil} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1} / {add/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,reverse,shuffle} and constructors {add,nil} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: app(y,z){y -> add(x,y)} = app(add(x,y),z) ->^+ add(x,app(y,z)) = C[app(y,z) = app(y,z){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1} / {add/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,reverse,shuffle} and constructors {add,nil} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_4() shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_6() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_4() shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_6() - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,4,6} by application of Pre({2,4,6}) = {1,3,5}. Here rules are labelled as follows: 1: app#(add(n,x),y) -> c_1(app#(x,y)) 2: app#(nil(),y) -> c_2() 3: reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) 4: reverse#(nil()) -> c_4() 5: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) 6: shuffle#(nil()) -> c_6() ** Step 1.b:3: RemoveWeakSuffixes. WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) - Weak DPs: app#(nil(),y) -> c_2() reverse#(nil()) -> c_4() shuffle#(nil()) -> c_6() - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:app#(add(n,x),y) -> c_1(app#(x,y)) -->_1 app#(nil(),y) -> c_2():4 -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 2:S:reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) -->_2 reverse#(nil()) -> c_4():5 -->_1 app#(nil(),y) -> c_2():4 -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):2 -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 3:S:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(nil()) -> c_6():6 -->_2 reverse#(nil()) -> c_4():5 -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)):3 -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):2 4:W:app#(nil(),y) -> c_2() 5:W:reverse#(nil()) -> c_4() 6:W:shuffle#(nil()) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: shuffle#(nil()) -> c_6() 5: reverse#(nil()) -> c_4() 4: app#(nil(),y) -> c_2() ** Step 1.b:4: UsableRules. WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) ** Step 1.b:5: DecomposeDG. WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) and a lower component app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) Further, following extension rules are added to the lower component. shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) *** Step 1.b:5.a:1: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) *** Step 1.b:5.a:2: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {app,reverse,app#,reverse#,shuffle#} TcT has computed the following interpretation: p(add) = [1] x2 + [2] p(app) = [1] x1 + [1] x2 + [0] p(nil) = [0] p(reverse) = [1] x1 + [0] p(shuffle) = [1] x1 + [4] p(app#) = [1] x1 + [1] x2 + [2] p(reverse#) = [0] p(shuffle#) = [8] x1 + [0] p(c_1) = [1] p(c_2) = [1] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] x1 + [14] p(c_6) = [8] Following rules are strictly oriented: shuffle#(add(n,x)) = [8] x + [16] > [8] x + [14] = c_5(shuffle#(reverse(x))) Following rules are (at-least) weakly oriented: app(add(n,x),y) = [1] x + [1] y + [2] >= [1] x + [1] y + [2] = add(n,app(x,y)) app(nil(),y) = [1] y + [0] >= [1] y + [0] = y reverse(add(n,x)) = [1] x + [2] >= [1] x + [2] = app(reverse(x),add(n,nil())) reverse(nil()) = [0] >= [0] = nil() *** Step 1.b:5.a:3: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/1,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:5.b:1: DecomposeDG. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) - Weak DPs: shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) and a lower component app#(add(n,x),y) -> c_1(app#(x,y)) Further, following extension rules are added to the lower component. reverse#(add(n,x)) -> app#(reverse(x),add(n,nil())) reverse#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) **** Step 1.b:5.b:1.a:1: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) - Weak DPs: shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):1 2:W:shuffle#(add(n,x)) -> reverse#(x) -->_1 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):1 3:W:shuffle#(add(n,x)) -> shuffle#(reverse(x)) -->_1 shuffle#(add(n,x)) -> shuffle#(reverse(x)):3 -->_1 shuffle#(add(n,x)) -> reverse#(x):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: reverse#(add(n,x)) -> c_3(reverse#(x)) **** Step 1.b:5.b:1.a:2: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: reverse#(add(n,x)) -> c_3(reverse#(x)) - Weak DPs: shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: {app,reverse,app#,reverse#,shuffle#} TcT has computed the following interpretation: p(add) = [1] x2 + [8] p(app) = [1] x1 + [1] x2 + [0] p(nil) = [0] p(reverse) = [1] x1 + [0] p(shuffle) = [0] p(app#) = [1] p(reverse#) = [2] x1 + [0] p(shuffle#) = [2] x1 + [0] p(c_1) = [1] x1 + [4] p(c_2) = [1] p(c_3) = [1] x1 + [8] p(c_4) = [2] p(c_5) = [2] p(c_6) = [1] Following rules are strictly oriented: reverse#(add(n,x)) = [2] x + [16] > [2] x + [8] = c_3(reverse#(x)) Following rules are (at-least) weakly oriented: shuffle#(add(n,x)) = [2] x + [16] >= [2] x + [0] = reverse#(x) shuffle#(add(n,x)) = [2] x + [16] >= [2] x + [0] = shuffle#(reverse(x)) app(add(n,x),y) = [1] x + [1] y + [8] >= [1] x + [1] y + [8] = add(n,app(x,y)) app(nil(),y) = [1] y + [0] >= [1] y + [0] = y reverse(add(n,x)) = [1] x + [8] >= [1] x + [8] = app(reverse(x),add(n,nil())) reverse(nil()) = [0] >= [0] = nil() **** Step 1.b:5.b:1.a:3: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: reverse#(add(n,x)) -> c_3(reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). **** Step 1.b:5.b:1.b:1: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(add(n,x),y) -> c_1(app#(x,y)) - Weak DPs: reverse#(add(n,x)) -> app#(reverse(x),add(n,nil())) reverse#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(add) = {2}, uargs(app) = {1}, uargs(app#) = {1}, uargs(shuffle#) = {1}, uargs(c_1) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(add) = [1] x1 + [1] x2 + [4] p(app) = [1] x1 + [1] x2 + [0] p(nil) = [0] p(reverse) = [1] x1 + [0] p(shuffle) = [1] p(app#) = [1] x1 + [1] p(reverse#) = [1] x1 + [3] p(shuffle#) = [1] x1 + [0] p(c_1) = [1] x1 + [1] p(c_2) = [2] p(c_3) = [1] x1 + [1] x2 + [0] p(c_4) = [2] p(c_5) = [1] x1 + [2] x2 + [1] p(c_6) = [0] Following rules are strictly oriented: app#(add(n,x),y) = [1] n + [1] x + [5] > [1] x + [2] = c_1(app#(x,y)) Following rules are (at-least) weakly oriented: reverse#(add(n,x)) = [1] n + [1] x + [7] >= [1] x + [1] = app#(reverse(x),add(n,nil())) reverse#(add(n,x)) = [1] n + [1] x + [7] >= [1] x + [3] = reverse#(x) shuffle#(add(n,x)) = [1] n + [1] x + [4] >= [1] x + [3] = reverse#(x) shuffle#(add(n,x)) = [1] n + [1] x + [4] >= [1] x + [0] = shuffle#(reverse(x)) app(add(n,x),y) = [1] n + [1] x + [1] y + [4] >= [1] n + [1] x + [1] y + [4] = add(n,app(x,y)) app(nil(),y) = [1] y + [0] >= [1] y + [0] = y reverse(add(n,x)) = [1] n + [1] x + [4] >= [1] n + [1] x + [4] = app(reverse(x),add(n,nil())) reverse(nil()) = [0] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. **** Step 1.b:5.b:1.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> app#(reverse(x),add(n,nil())) reverse#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) - Weak TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() - Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,reverse#,shuffle#} and constructors {add,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^3))