/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 49 ms] (6) CdtProblem (7) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (8) BOUNDS(1, 1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0, y) -> 0 f(s(x), y) -> f(f(x, y), y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: f(0, z0) -> 0 f(s(z0), z1) -> f(f(z0, z1), z1) Tuples: F(0, z0) -> c F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) S tuples: F(0, z0) -> c F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c, c1_2 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: F(0, z0) -> c ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f(0, z0) -> 0 f(s(z0), z1) -> f(f(z0, z1), z1) Tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) S tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c1_2 ---------------------------------------- (5) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) We considered the (Usable) Rules: f(0, z0) -> 0 f(s(z0), z1) -> f(f(z0, z1), z1) And the Tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(F(x_1, x_2)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(f(x_1, x_2)) = 0 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(0, z0) -> 0 f(s(z0), z1) -> f(f(z0, z1), z1) Tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) S tuples:none K tuples: F(s(z0), z1) -> c1(F(f(z0, z1), z1), F(z0, z1)) Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c1_2 ---------------------------------------- (7) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (8) BOUNDS(1, 1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0, y) -> 0 f(s(x), y) -> f(f(x, y), y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(s(x), y) ->^+ f(f(x, y), y) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / s(x)]. The result substitution is [ ]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0, y) -> 0 f(s(x), y) -> f(f(x, y), y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0, y) -> 0 f(s(x), y) -> f(f(x, y), y) S is empty. Rewrite Strategy: INNERMOST