/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 6 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 4 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 363 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 129 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 762 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 290 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 433 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 278 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (38) CpxRNTS (39) FinalProof [FINISHED, 0 ms] (40) BOUNDS(1, n^3) (41) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (42) CpxTRS (43) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (44) typed CpxTrs (45) OrderProof [LOWER BOUND(ID), 0 ms] (46) typed CpxTrs (47) RewriteLemmaProof [LOWER BOUND(ID), 258 ms] (48) BEST (49) proven lower bound (50) LowerBoundPropagationProof [FINISHED, 0 ms] (51) BOUNDS(n^1, INF) (52) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(0, y) -> 0 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0 if_minus(false, s(x), y) -> s(minus(x, y)) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(s(0)) -> 0 log(s(s(x))) -> s(log(s(quot(x, s(s(0)))))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) [1] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] quot(0, s(y)) -> 0 [1] quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) [1] log(s(0)) -> 0 [1] log(s(s(x))) -> s(log(s(quot(x, s(s(0)))))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) [1] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] quot(0, s(y)) -> 0 [1] quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) [1] log(s(0)) -> 0 [1] log(s(s(x))) -> s(log(s(quot(x, s(s(0)))))) [1] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s if_minus :: true:false -> 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s log :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: log_1 (c) The following functions are completely defined: le_2 minus_2 quot_2 if_minus_3 Due to the following rules being added: quot(v0, v1) -> 0 [0] if_minus(v0, v1, v2) -> 0 [0] And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) [1] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] quot(0, s(y)) -> 0 [1] quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) [1] log(s(0)) -> 0 [1] log(s(s(x))) -> s(log(s(quot(x, s(s(0)))))) [1] quot(v0, v1) -> 0 [0] if_minus(v0, v1, v2) -> 0 [0] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s if_minus :: true:false -> 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s log :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), 0) -> if_minus(false, s(x), 0) [2] minus(s(x), s(y')) -> if_minus(le(x, y'), s(x), s(y')) [2] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] quot(0, s(y)) -> 0 [1] quot(s(0), s(y)) -> s(quot(0, s(y))) [2] quot(s(s(x')), s(y)) -> s(quot(if_minus(le(s(x'), y), s(x'), y), s(y))) [2] log(s(0)) -> 0 [1] log(s(s(0))) -> s(log(s(0))) [2] log(s(s(s(x'')))) -> s(log(s(s(quot(minus(x'', s(0)), s(s(0))))))) [2] log(s(s(x))) -> s(log(s(0))) [1] quot(v0, v1) -> 0 [0] if_minus(v0, v1, v2) -> 0 [0] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s if_minus :: true:false -> 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s log :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 1 false => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z' = 1 + x, z'' = y, z = 1, x >= 0, y >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0, z = 0 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: x >= 0, z = 1 + (1 + x) log(z) -{ 2 }-> 1 + log(1 + (1 + quot(minus(x'', 1 + 0), 1 + (1 + 0)))) :|: x'' >= 0, z = 1 + (1 + (1 + x'')) minus(z, z') -{ 2 }-> if_minus(le(x, y'), 1 + x, 1 + y') :|: x >= 0, y' >= 0, z = 1 + x, z' = 1 + y' minus(z, z') -{ 2 }-> if_minus(0, 1 + x, 0) :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y quot(z, z') -{ 1 }-> 0 :|: z' = 1 + y, y >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 quot(z, z') -{ 2 }-> 1 + quot(if_minus(le(1 + x', y), 1 + x', y), 1 + y) :|: z' = 1 + y, x' >= 0, y >= 0, z = 1 + (1 + x') quot(z, z') -{ 2 }-> 1 + quot(0, 1 + y) :|: z' = 1 + y, z = 1 + 0, y >= 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ 2 }-> 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(if_minus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { le } { minus, if_minus } { quot } { log } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ 2 }-> 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(if_minus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {le}, {minus,if_minus}, {quot}, {log} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ 2 }-> 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(if_minus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {le}, {minus,if_minus}, {quot}, {log} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ 2 }-> 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(if_minus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {le}, {minus,if_minus}, {quot}, {log} Previous analysis results are: le: runtime: ?, size: O(1) [1] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: le after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ 2 }-> 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0 minus(z, z') -{ 2 }-> if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 2 }-> 1 + quot(if_minus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {minus,if_minus}, {quot}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ 2 }-> 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0 minus(z, z') -{ 3 + z' }-> if_minus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(if_minus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {minus,if_minus}, {quot}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z Computed SIZE bound using CoFloCo for: if_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ 2 }-> 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0 minus(z, z') -{ 3 + z' }-> if_minus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(if_minus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {minus,if_minus}, {quot}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: ?, size: O(n^1) [z] if_minus: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 4*z + z*z' + 2*z' Computed RUNTIME bound using KoAT for: if_minus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 6 + 4*z' + z'*z'' + z'' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ 2 }-> 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0 minus(z, z') -{ 3 + z' }-> if_minus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 2 }-> if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 + z' }-> 1 + quot(if_minus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {quot}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 5 + 4*z' + z'*z'' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= z' - 1, z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ -3 + 5*z }-> 1 + log(1 + (1 + quot(s5, 1 + (1 + 0)))) :|: s5 >= 0, s5 <= z - 3, z - 3 >= 0 minus(z, z') -{ 8 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 5 + 3*z + z*z' + z' }-> 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 + (z - 2), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {quot}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 5 + 4*z' + z'*z'' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= z' - 1, z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ -3 + 5*z }-> 1 + log(1 + (1 + quot(s5, 1 + (1 + 0)))) :|: s5 >= 0, s5 <= z - 3, z - 3 >= 0 minus(z, z') -{ 8 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 5 + 3*z + z*z' + z' }-> 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 + (z - 2), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {quot}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] quot: runtime: ?, size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 7*z + z*z' + 3*z^2 + z^2*z' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 5 + 4*z' + z'*z'' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= z' - 1, z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ -3 + 5*z }-> 1 + log(1 + (1 + quot(s5, 1 + (1 + 0)))) :|: s5 >= 0, s5 <= z - 3, z - 3 >= 0 minus(z, z') -{ 8 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 5 + 3*z + z*z' + z' }-> 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 + (z - 2), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 Function symbols to be analyzed: {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] quot: runtime: O(n^3) [1 + 7*z + z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 5 + 4*z' + z'*z'' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= z' - 1, z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ -2 + 9*s5 + 5*s5^2 + 5*z }-> 1 + log(1 + (1 + s8)) :|: s8 >= 0, s8 <= s5, s5 >= 0, s5 <= z - 3, z - 3 >= 0 minus(z, z') -{ 8 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z = 1 + 0, z' - 1 >= 0 quot(z, z') -{ 6 + 7*s4 + s4*z' + 3*s4^2 + s4^2*z' + 3*z + z*z' + z' }-> 1 + s7 :|: s7 >= 0, s7 <= s4, s4 >= 0, s4 <= 1 + (z - 2), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0 Function symbols to be analyzed: {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] quot: runtime: O(n^3) [1 + 7*z + z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: log after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 5 + 4*z' + z'*z'' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= z' - 1, z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ -2 + 9*s5 + 5*s5^2 + 5*z }-> 1 + log(1 + (1 + s8)) :|: s8 >= 0, s8 <= s5, s5 >= 0, s5 <= z - 3, z - 3 >= 0 minus(z, z') -{ 8 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z = 1 + 0, z' - 1 >= 0 quot(z, z') -{ 6 + 7*s4 + s4*z' + 3*s4^2 + s4^2*z' + 3*z + z*z' + z' }-> 1 + s7 :|: s7 >= 0, s7 <= s4, s4 >= 0, s4 <= 1 + (z - 2), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0 Function symbols to be analyzed: {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] quot: runtime: O(n^3) [1 + 7*z + z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] log: runtime: ?, size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: log after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 3*z + 14*z^2 + 5*z^3 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 1, z' - 1 >= 0, z'' >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 if_minus(z, z', z'') -{ 5 + 4*z' + z'*z'' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= z' - 1, z' - 1 >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> 0 :|: z = 1 + 0 log(z) -{ 2 }-> 1 + log(1 + 0) :|: z = 1 + (1 + 0) log(z) -{ 1 }-> 1 + log(1 + 0) :|: z - 2 >= 0 log(z) -{ -2 + 9*s5 + 5*s5^2 + 5*z }-> 1 + log(1 + (1 + s8)) :|: s8 >= 0, s8 <= s5, s5 >= 0, s5 <= z - 3, z - 3 >= 0 minus(z, z') -{ 8 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 quot(z, z') -{ 3 }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z = 1 + 0, z' - 1 >= 0 quot(z, z') -{ 6 + 7*s4 + s4*z' + 3*s4^2 + s4^2*z' + 3*z + z*z' + z' }-> 1 + s7 :|: s7 >= 0, s7 <= s4, s4 >= 0, s4 <= 1 + (z - 2), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] minus: runtime: O(n^2) [8 + 4*z + z*z' + 2*z'], size: O(n^1) [z] if_minus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] quot: runtime: O(n^3) [1 + 7*z + z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] log: runtime: O(n^3) [1 + 3*z + 14*z^2 + 5*z^3], size: O(n^1) [z] ---------------------------------------- (39) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (40) BOUNDS(1, n^3) ---------------------------------------- (41) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (42) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(s(0')) -> 0' log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (43) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (44) Obligation: Innermost TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(s(0')) -> 0' log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s if_minus :: true:false -> 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s log :: 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (45) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, minus, quot, log They will be analysed ascendingly in the following order: le < minus minus < quot quot < log ---------------------------------------- (46) Obligation: Innermost TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(s(0')) -> 0' log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s if_minus :: true:false -> 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s log :: 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, minus, quot, log They will be analysed ascendingly in the following order: le < minus minus < quot quot < log ---------------------------------------- (47) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (48) Complex Obligation (BEST) ---------------------------------------- (49) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(s(0')) -> 0' log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s if_minus :: true:false -> 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s log :: 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, minus, quot, log They will be analysed ascendingly in the following order: le < minus minus < quot quot < log ---------------------------------------- (50) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (51) BOUNDS(n^1, INF) ---------------------------------------- (52) Obligation: Innermost TRS: Rules: le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) minus(0', y) -> 0' minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0' if_minus(false, s(x), y) -> s(minus(x, y)) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) log(s(0')) -> 0' log(s(s(x))) -> s(log(s(quot(x, s(s(0')))))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s if_minus :: true:false -> 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s log :: 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus, quot, log They will be analysed ascendingly in the following order: minus < quot quot < log