/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 25 ms] (8) CdtProblem (9) CdtKnowledgeProof [FINISHED, 0 ms] (10) BOUNDS(1, 1) (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (12) TRS for Loop Detection (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: g(z0, z1) -> z0 g(z0, z1) -> z1 f(0, 1, z0) -> f(s(z0), z0, z0) f(z0, z1, s(z2)) -> s(f(0, 1, z2)) Tuples: G(z0, z1) -> c G(z0, z1) -> c1 F(0, 1, z0) -> c2(F(s(z0), z0, z0)) F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) S tuples: G(z0, z1) -> c G(z0, z1) -> c1 F(0, 1, z0) -> c2(F(s(z0), z0, z0)) F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) K tuples:none Defined Rule Symbols: g_2, f_3 Defined Pair Symbols: G_2, F_3 Compound Symbols: c, c1, c2_1, c3_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: G(z0, z1) -> c G(z0, z1) -> c1 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: g(z0, z1) -> z0 g(z0, z1) -> z1 f(0, 1, z0) -> f(s(z0), z0, z0) f(z0, z1, s(z2)) -> s(f(0, 1, z2)) Tuples: F(0, 1, z0) -> c2(F(s(z0), z0, z0)) F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) S tuples: F(0, 1, z0) -> c2(F(s(z0), z0, z0)) F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) K tuples:none Defined Rule Symbols: g_2, f_3 Defined Pair Symbols: F_3 Compound Symbols: c2_1, c3_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: g(z0, z1) -> z0 g(z0, z1) -> z1 f(0, 1, z0) -> f(s(z0), z0, z0) f(z0, z1, s(z2)) -> s(f(0, 1, z2)) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(0, 1, z0) -> c2(F(s(z0), z0, z0)) F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) S tuples: F(0, 1, z0) -> c2(F(s(z0), z0, z0)) F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_3 Compound Symbols: c2_1, c3_1 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) We considered the (Usable) Rules:none And the Tuples: F(0, 1, z0) -> c2(F(s(z0), z0, z0)) F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [3] POL(1) = 0 POL(F(x_1, x_2, x_3)) = [2]x_3 POL(c2(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(0, 1, z0) -> c2(F(s(z0), z0, z0)) F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) S tuples: F(0, 1, z0) -> c2(F(s(z0), z0, z0)) K tuples: F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) Defined Rule Symbols:none Defined Pair Symbols: F_3 Compound Symbols: c2_1, c3_1 ---------------------------------------- (9) CdtKnowledgeProof (FINISHED) The following tuples could be moved from S to K by knowledge propagation: F(0, 1, z0) -> c2(F(s(z0), z0, z0)) F(z0, z1, s(z2)) -> c3(F(0, 1, z2)) Now S is empty ---------------------------------------- (10) BOUNDS(1, 1) ---------------------------------------- (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(x, y, s(z)) ->^+ s(f(0, 1, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z / s(z)]. The result substitution is [x / 0, y / 1]. ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(x, y) -> x g(x, y) -> y f(0, 1, x) -> f(s(x), x, x) f(x, y, s(z)) -> s(f(0, 1, z)) S is empty. Rewrite Strategy: INNERMOST