/export/starexec/sandbox2/solver/bin/starexec_run_tct_rci /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),?) * Step 1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: if(false(),x,y) -> s(minus(p(x),y)) if(true(),x,y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,y) -> if(le(x,y),x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {if,le,minus,p} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: if(false(),x,y) -> s(minus(p(x),y)) if(true(),x,y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,y) -> if(le(x,y),x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {if,le,minus,p} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: if(false(),x,y) -> s(minus(p(x),y)) if(true(),x,y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,y) -> if(le(x,y),x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {if,le,minus,p} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: le(x,y){x -> s(x),y -> s(y)} = le(s(x),s(y)) ->^+ le(x,y) = C[le(x,y) = le(x,y){}] ** Step 1.b:1: DependencyPairs. MAYBE + Considered Problem: - Strict TRS: if(false(),x,y) -> s(minus(p(x),y)) if(true(),x,y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,y) -> if(le(x,y),x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {if,le,minus,p} and constructors {0,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs if#(false(),x,y) -> c_1(minus#(p(x),y),p#(x)) if#(true(),x,y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) p#(0()) -> c_7() p#(s(x)) -> c_8() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. MAYBE + Considered Problem: - Strict DPs: if#(false(),x,y) -> c_1(minus#(p(x),y),p#(x)) if#(true(),x,y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) p#(0()) -> c_7() p#(s(x)) -> c_8() - Weak TRS: if(false(),x,y) -> s(minus(p(x),y)) if(true(),x,y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,y) -> if(le(x,y),x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/2,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,3,4,7,8} by application of Pre({2,3,4,7,8}) = {1,5,6}. Here rules are labelled as follows: 1: if#(false(),x,y) -> c_1(minus#(p(x),y),p#(x)) 2: if#(true(),x,y) -> c_2() 3: le#(0(),y) -> c_3() 4: le#(s(x),0()) -> c_4() 5: le#(s(x),s(y)) -> c_5(le#(x,y)) 6: minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) 7: p#(0()) -> c_7() 8: p#(s(x)) -> c_8() ** Step 1.b:3: RemoveWeakSuffixes. MAYBE + Considered Problem: - Strict DPs: if#(false(),x,y) -> c_1(minus#(p(x),y),p#(x)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) - Weak DPs: if#(true(),x,y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() p#(0()) -> c_7() p#(s(x)) -> c_8() - Weak TRS: if(false(),x,y) -> s(minus(p(x),y)) if(true(),x,y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,y) -> if(le(x,y),x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/2,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:if#(false(),x,y) -> c_1(minus#(p(x),y),p#(x)) -->_1 minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)):3 -->_2 p#(s(x)) -> c_8():8 -->_2 p#(0()) -> c_7():7 2:S:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),0()) -> c_4():6 -->_1 le#(0(),y) -> c_3():5 -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2 3:S:minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) -->_2 le#(s(x),0()) -> c_4():6 -->_2 le#(0(),y) -> c_3():5 -->_1 if#(true(),x,y) -> c_2():4 -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):2 -->_1 if#(false(),x,y) -> c_1(minus#(p(x),y),p#(x)):1 4:W:if#(true(),x,y) -> c_2() 5:W:le#(0(),y) -> c_3() 6:W:le#(s(x),0()) -> c_4() 7:W:p#(0()) -> c_7() 8:W:p#(s(x)) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: p#(0()) -> c_7() 8: p#(s(x)) -> c_8() 4: if#(true(),x,y) -> c_2() 5: le#(0(),y) -> c_3() 6: le#(s(x),0()) -> c_4() ** Step 1.b:4: SimplifyRHS. MAYBE + Considered Problem: - Strict DPs: if#(false(),x,y) -> c_1(minus#(p(x),y),p#(x)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) - Weak TRS: if(false(),x,y) -> s(minus(p(x),y)) if(true(),x,y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,y) -> if(le(x,y),x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/2,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:if#(false(),x,y) -> c_1(minus#(p(x),y),p#(x)) -->_1 minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)):3 2:S:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2 3:S:minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):2 -->_1 if#(false(),x,y) -> c_1(minus#(p(x),y),p#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: if#(false(),x,y) -> c_1(minus#(p(x),y)) ** Step 1.b:5: UsableRules. MAYBE + Considered Problem: - Strict DPs: if#(false(),x,y) -> c_1(minus#(p(x),y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) - Weak TRS: if(false(),x,y) -> s(minus(p(x),y)) if(true(),x,y) -> 0() le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,y) -> if(le(x,y),x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/2,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) p(0()) -> 0() p(s(x)) -> x if#(false(),x,y) -> c_1(minus#(p(x),y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) ** Step 1.b:6: DecomposeDG. MAYBE + Considered Problem: - Strict DPs: if#(false(),x,y) -> c_1(minus#(p(x),y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/2,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component if#(false(),x,y) -> c_1(minus#(p(x),y)) minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) and a lower component le#(s(x),s(y)) -> c_5(le#(x,y)) Further, following extension rules are added to the lower component. if#(false(),x,y) -> minus#(p(x),y) minus#(x,y) -> if#(le(x,y),x,y) minus#(x,y) -> le#(x,y) *** Step 1.b:6.a:1: SimplifyRHS. MAYBE + Considered Problem: - Strict DPs: if#(false(),x,y) -> c_1(minus#(p(x),y)) minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/2,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:if#(false(),x,y) -> c_1(minus#(p(x),y)) -->_1 minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)):2 2:S:minus#(x,y) -> c_6(if#(le(x,y),x,y),le#(x,y)) -->_1 if#(false(),x,y) -> c_1(minus#(p(x),y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(x,y) -> c_6(if#(le(x,y),x,y)) *** Step 1.b:6.a:2: WeightGap. MAYBE + Considered Problem: - Strict DPs: if#(false(),x,y) -> c_1(minus#(p(x),y)) minus#(x,y) -> c_6(if#(le(x,y),x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/1,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(if#) = {1}, uargs(minus#) = {1}, uargs(c_1) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(false) = [0] p(if) = [0] p(le) = [0] p(minus) = [0] p(p) = [1] x1 + [0] p(s) = [1] x1 + [0] p(true) = [0] p(if#) = [1] x1 + [1] x2 + [0] p(le#) = [0] p(minus#) = [1] x1 + [5] p(p#) = [0] p(c_1) = [1] x1 + [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [0] p(c_7) = [0] p(c_8) = [0] Following rules are strictly oriented: minus#(x,y) = [1] x + [5] > [1] x + [0] = c_6(if#(le(x,y),x,y)) Following rules are (at-least) weakly oriented: if#(false(),x,y) = [1] x + [0] >= [1] x + [5] = c_1(minus#(p(x),y)) le(0(),y) = [0] >= [0] = true() le(s(x),0()) = [0] >= [0] = false() le(s(x),s(y)) = [0] >= [0] = le(x,y) p(0()) = [1] >= [1] = 0() p(s(x)) = [1] x + [0] >= [1] x + [0] = x Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** Step 1.b:6.a:3: Failure MAYBE + Considered Problem: - Strict DPs: if#(false(),x,y) -> c_1(minus#(p(x),y)) - Weak DPs: minus#(x,y) -> c_6(if#(le(x,y),x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/1,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is still open. *** Step 1.b:6.b:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) - Weak DPs: if#(false(),x,y) -> minus#(p(x),y) minus#(x,y) -> if#(le(x,y),x,y) minus#(x,y) -> le#(x,y) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/2,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {if#,le#,minus#,p#} TcT has computed the following interpretation: p(0) = [0] p(false) = [0] p(if) = [0] p(le) = [0] p(minus) = [0] p(p) = [0] p(s) = [1] x1 + [2] p(true) = [0] p(if#) = [2] x3 + [1] p(le#) = [2] x2 + [0] p(minus#) = [2] x2 + [1] p(p#) = [8] p(c_1) = [1] x1 + [0] p(c_2) = [2] p(c_3) = [0] p(c_4) = [1] p(c_5) = [1] x1 + [1] p(c_6) = [1] x2 + [1] p(c_7) = [1] p(c_8) = [2] Following rules are strictly oriented: le#(s(x),s(y)) = [2] y + [4] > [2] y + [1] = c_5(le#(x,y)) Following rules are (at-least) weakly oriented: if#(false(),x,y) = [2] y + [1] >= [2] y + [1] = minus#(p(x),y) minus#(x,y) = [2] y + [1] >= [2] y + [1] = if#(le(x,y),x,y) minus#(x,y) = [2] y + [1] >= [2] y + [0] = le#(x,y) *** Step 1.b:6.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: if#(false(),x,y) -> minus#(p(x),y) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,y) -> if#(le(x,y),x,y) minus#(x,y) -> le#(x,y) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/2,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),?)