/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 363 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 95 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 588 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 258 ms] (26) CpxRNTS (27) FinalProof [FINISHED, 0 ms] (28) BOUNDS(1, n^2) (29) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxTRS (31) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (32) typed CpxTrs (33) OrderProof [LOWER BOUND(ID), 0 ms] (34) typed CpxTrs (35) RewriteLemmaProof [LOWER BOUND(ID), 278 ms] (36) BEST (37) proven lower bound (38) LowerBoundPropagationProof [FINISHED, 0 ms] (39) BOUNDS(n^1, INF) (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 192 ms] (42) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) [1] The TRS has the following type information: quot :: 0:s -> 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: quot_3 (c) The following functions are completely defined: plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) [1] The TRS has the following type information: quot :: 0:s -> 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(0)) -> s(quot(x, s(0), s(0))) [2] quot(x, 0, s(s(x'))) -> s(quot(x, s(plus(x', s(0))), s(s(x')))) [2] The TRS has the following type information: quot :: 0:s -> 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 quot(z', z'', z1) -{ 1 }-> quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y quot(z', z'', z1) -{ 1 }-> 0 :|: z >= 0, y >= 0, z'' = 1 + y, z1 = 1 + z, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(x, 1 + plus(x', 1 + 0), 1 + (1 + x')) :|: z'' = 0, z' = x, x >= 0, x' >= 0, z1 = 1 + (1 + x') quot(z', z'', z1) -{ 2 }-> 1 + quot(x, 1 + 0, 1 + 0) :|: z'' = 0, z' = x, z1 = 1 + 0, x >= 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus } { quot } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {plus}, {quot} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {plus}, {quot} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {plus}, {quot} Previous analysis results are: plus: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {quot} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 + z1 }-> 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= z1 - 2 + (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {quot} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 + z1 }-> 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= z1 - 2 + (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {quot} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: ?, size: O(n^1) [2 + 2*z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5 + 5*z' + z'*z1 + z1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 + z1 }-> 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= z1 - 2 + (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [5 + 5*z' + z'*z1 + z1], size: O(n^1) [2 + 2*z'] ---------------------------------------- (27) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (28) BOUNDS(1, n^2) ---------------------------------------- (29) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (30) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0', s(z)) -> s(quot(x, plus(z, s(0')), s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (31) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (32) Obligation: Innermost TRS: Rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0', s(z)) -> s(quot(x, plus(z, s(0')), s(z))) Types: quot :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (33) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: quot, plus They will be analysed ascendingly in the following order: plus < quot ---------------------------------------- (34) Obligation: Innermost TRS: Rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0', s(z)) -> s(quot(x, plus(z, s(0')), s(z))) Types: quot :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, quot They will be analysed ascendingly in the following order: plus < quot ---------------------------------------- (35) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Induction Base: plus(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) gen_0':s2_0(b) Induction Step: plus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) s(plus(gen_0':s2_0(n4_0), gen_0':s2_0(b))) ->_IH s(gen_0':s2_0(+(b, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (36) Complex Obligation (BEST) ---------------------------------------- (37) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0', s(z)) -> s(quot(x, plus(z, s(0')), s(z))) Types: quot :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, quot They will be analysed ascendingly in the following order: plus < quot ---------------------------------------- (38) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (39) BOUNDS(n^1, INF) ---------------------------------------- (40) Obligation: Innermost TRS: Rules: quot(0', s(y), s(z)) -> 0' quot(s(x), s(y), z) -> quot(x, y, z) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0', s(z)) -> s(quot(x, plus(z, s(0')), s(z))) Types: quot :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: quot ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quot(gen_0':s2_0(n461_0), gen_0':s2_0(+(1, n461_0)), gen_0':s2_0(1)) -> gen_0':s2_0(0), rt in Omega(1 + n461_0) Induction Base: quot(gen_0':s2_0(0), gen_0':s2_0(+(1, 0)), gen_0':s2_0(1)) ->_R^Omega(1) 0' Induction Step: quot(gen_0':s2_0(+(n461_0, 1)), gen_0':s2_0(+(1, +(n461_0, 1))), gen_0':s2_0(1)) ->_R^Omega(1) quot(gen_0':s2_0(n461_0), gen_0':s2_0(+(1, n461_0)), gen_0':s2_0(1)) ->_IH gen_0':s2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) BOUNDS(1, INF)