/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 312 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 80 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 735 ms] (20) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: p(s(x)) -> x fact(0) -> s(0) fact(s(x)) -> *(s(x), fact(p(s(x)))) *(0, y) -> 0 *(s(x), y) -> +(*(x, y), y) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: p(s(x)) -> x fact(0') -> s(0') fact(s(x)) -> *'(s(x), fact(p(s(x)))) *'(0', y) -> 0' *'(s(x), y) -> +'(*'(x, y), y) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: p(s(x)) -> x fact(0') -> s(0') fact(s(x)) -> *'(s(x), fact(p(s(x)))) *'(0', y) -> 0' *'(s(x), y) -> +'(*'(x, y), y) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' fact :: s:0' -> s:0' 0' :: s:0' *' :: s:0' -> s:0' -> s:0' +' :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: fact, *', +' They will be analysed ascendingly in the following order: *' < fact +' < *' ---------------------------------------- (6) Obligation: Innermost TRS: Rules: p(s(x)) -> x fact(0') -> s(0') fact(s(x)) -> *'(s(x), fact(p(s(x)))) *'(0', y) -> 0' *'(s(x), y) -> +'(*'(x, y), y) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' fact :: s:0' -> s:0' 0' :: s:0' *' :: s:0' -> s:0' -> s:0' +' :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: +', fact, *' They will be analysed ascendingly in the following order: *' < fact +' < *' ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) -> gen_s:0'2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Induction Base: +'(gen_s:0'2_0(a), gen_s:0'2_0(0)) ->_R^Omega(1) gen_s:0'2_0(a) Induction Step: +'(gen_s:0'2_0(a), gen_s:0'2_0(+(n4_0, 1))) ->_R^Omega(1) s(+'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0))) ->_IH s(gen_s:0'2_0(+(a, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: p(s(x)) -> x fact(0') -> s(0') fact(s(x)) -> *'(s(x), fact(p(s(x)))) *'(0', y) -> 0' *'(s(x), y) -> +'(*'(x, y), y) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' fact :: s:0' -> s:0' 0' :: s:0' *' :: s:0' -> s:0' -> s:0' +' :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: +', fact, *' They will be analysed ascendingly in the following order: *' < fact +' < *' ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: p(s(x)) -> x fact(0') -> s(0') fact(s(x)) -> *'(s(x), fact(p(s(x)))) *'(0', y) -> 0' *'(s(x), y) -> +'(*'(x, y), y) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' fact :: s:0' -> s:0' 0' :: s:0' *' :: s:0' -> s:0' -> s:0' +' :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Lemmas: +'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) -> gen_s:0'2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: *', fact They will be analysed ascendingly in the following order: *' < fact ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: *'(gen_s:0'2_0(n513_0), gen_s:0'2_0(b)) -> gen_s:0'2_0(*(n513_0, b)), rt in Omega(1 + b*n513_0 + n513_0) Induction Base: *'(gen_s:0'2_0(0), gen_s:0'2_0(b)) ->_R^Omega(1) 0' Induction Step: *'(gen_s:0'2_0(+(n513_0, 1)), gen_s:0'2_0(b)) ->_R^Omega(1) +'(*'(gen_s:0'2_0(n513_0), gen_s:0'2_0(b)), gen_s:0'2_0(b)) ->_IH +'(gen_s:0'2_0(*(c514_0, b)), gen_s:0'2_0(b)) ->_L^Omega(1 + b) gen_s:0'2_0(+(b, *(n513_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: Innermost TRS: Rules: p(s(x)) -> x fact(0') -> s(0') fact(s(x)) -> *'(s(x), fact(p(s(x)))) *'(0', y) -> 0' *'(s(x), y) -> +'(*'(x, y), y) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' fact :: s:0' -> s:0' 0' :: s:0' *' :: s:0' -> s:0' -> s:0' +' :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Lemmas: +'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) -> gen_s:0'2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: *', fact They will be analysed ascendingly in the following order: *' < fact ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: p(s(x)) -> x fact(0') -> s(0') fact(s(x)) -> *'(s(x), fact(p(s(x)))) *'(0', y) -> 0' *'(s(x), y) -> +'(*'(x, y), y) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: p :: s:0' -> s:0' s :: s:0' -> s:0' fact :: s:0' -> s:0' 0' :: s:0' *' :: s:0' -> s:0' -> s:0' +' :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' gen_s:0'2_0 :: Nat -> s:0' Lemmas: +'(gen_s:0'2_0(a), gen_s:0'2_0(n4_0)) -> gen_s:0'2_0(+(n4_0, a)), rt in Omega(1 + n4_0) *'(gen_s:0'2_0(n513_0), gen_s:0'2_0(b)) -> gen_s:0'2_0(*(n513_0, b)), rt in Omega(1 + b*n513_0 + n513_0) Generator Equations: gen_s:0'2_0(0) <=> 0' gen_s:0'2_0(+(x, 1)) <=> s(gen_s:0'2_0(x)) The following defined symbols remain to be analysed: fact ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fact(gen_s:0'2_0(n1126_0)) -> *3_0, rt in Omega(n1126_0) Induction Base: fact(gen_s:0'2_0(0)) Induction Step: fact(gen_s:0'2_0(+(n1126_0, 1))) ->_R^Omega(1) *'(s(gen_s:0'2_0(n1126_0)), fact(p(s(gen_s:0'2_0(n1126_0))))) ->_R^Omega(1) *'(s(gen_s:0'2_0(n1126_0)), fact(gen_s:0'2_0(n1126_0))) ->_IH *'(s(gen_s:0'2_0(n1126_0)), *3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) BOUNDS(1, INF)