/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 10 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 48 ms] (8) CdtProblem (9) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (10) BOUNDS(1, 1) (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (12) TRS for Loop Detection (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: D(t) -> 1 D(constant) -> 0 D(+(x, y)) -> +(D(x), D(y)) D(*(x, y)) -> +(*(y, D(x)), *(x, D(y))) D(-(x, y)) -> -(D(x), D(y)) D(minus(x)) -> minus(D(x)) D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2))) D(ln(x)) -> div(D(x), x) D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: D(t) -> 1 D(constant) -> 0 D(+(z0, z1)) -> +(D(z0), D(z1)) D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) D(-(z0, z1)) -> -(D(z0), D(z1)) D(minus(z0)) -> minus(D(z0)) D(div(z0, z1)) -> -(div(D(z0), z1), div(*(z0, D(z1)), pow(z1, 2))) D(ln(z0)) -> div(D(z0), z0) D(pow(z0, z1)) -> +(*(*(z1, pow(z0, -(z1, 1))), D(z0)), *(*(pow(z0, z1), ln(z0)), D(z1))) Tuples: D'(t) -> c D'(constant) -> c1 D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) S tuples: D'(t) -> c D'(constant) -> c1 D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) K tuples:none Defined Rule Symbols: D_1 Defined Pair Symbols: D'_1 Compound Symbols: c, c1, c2_2, c3_2, c4_2, c5_1, c6_2, c7_1, c8_2 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: D'(t) -> c D'(constant) -> c1 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: D(t) -> 1 D(constant) -> 0 D(+(z0, z1)) -> +(D(z0), D(z1)) D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) D(-(z0, z1)) -> -(D(z0), D(z1)) D(minus(z0)) -> minus(D(z0)) D(div(z0, z1)) -> -(div(D(z0), z1), div(*(z0, D(z1)), pow(z1, 2))) D(ln(z0)) -> div(D(z0), z0) D(pow(z0, z1)) -> +(*(*(z1, pow(z0, -(z1, 1))), D(z0)), *(*(pow(z0, z1), ln(z0)), D(z1))) Tuples: D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) S tuples: D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) K tuples:none Defined Rule Symbols: D_1 Defined Pair Symbols: D'_1 Compound Symbols: c2_2, c3_2, c4_2, c5_1, c6_2, c7_1, c8_2 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: D(t) -> 1 D(constant) -> 0 D(+(z0, z1)) -> +(D(z0), D(z1)) D(*(z0, z1)) -> +(*(z1, D(z0)), *(z0, D(z1))) D(-(z0, z1)) -> -(D(z0), D(z1)) D(minus(z0)) -> minus(D(z0)) D(div(z0, z1)) -> -(div(D(z0), z1), div(*(z0, D(z1)), pow(z1, 2))) D(ln(z0)) -> div(D(z0), z0) D(pow(z0, z1)) -> +(*(*(z1, pow(z0, -(z1, 1))), D(z0)), *(*(pow(z0, z1), ln(z0)), D(z1))) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) S tuples: D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: D'_1 Compound Symbols: c2_2, c3_2, c4_2, c5_1, c6_2, c7_1, c8_2 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) We considered the (Usable) Rules:none And the Tuples: D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(*(x_1, x_2)) = [1] + x_1 + x_2 POL(+(x_1, x_2)) = [1] + x_1 + x_2 POL(-(x_1, x_2)) = [1] + x_1 + x_2 POL(D'(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1)) = x_1 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(div(x_1, x_2)) = [1] + x_1 + x_2 POL(ln(x_1)) = [1] + x_1 POL(minus(x_1)) = [1] + x_1 POL(pow(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) S tuples:none K tuples: D'(+(z0, z1)) -> c2(D'(z0), D'(z1)) D'(*(z0, z1)) -> c3(D'(z0), D'(z1)) D'(-(z0, z1)) -> c4(D'(z0), D'(z1)) D'(minus(z0)) -> c5(D'(z0)) D'(div(z0, z1)) -> c6(D'(z0), D'(z1)) D'(ln(z0)) -> c7(D'(z0)) D'(pow(z0, z1)) -> c8(D'(z0), D'(z1)) Defined Rule Symbols:none Defined Pair Symbols: D'_1 Compound Symbols: c2_2, c3_2, c4_2, c5_1, c6_2, c7_1, c8_2 ---------------------------------------- (9) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (10) BOUNDS(1, 1) ---------------------------------------- (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: D(t) -> 1 D(constant) -> 0 D(+(x, y)) -> +(D(x), D(y)) D(*(x, y)) -> +(*(y, D(x)), *(x, D(y))) D(-(x, y)) -> -(D(x), D(y)) D(minus(x)) -> minus(D(x)) D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2))) D(ln(x)) -> div(D(x), x) D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence D(+(x, y)) ->^+ +(D(x), D(y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / +(x, y)]. The result substitution is [ ]. ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: D(t) -> 1 D(constant) -> 0 D(+(x, y)) -> +(D(x), D(y)) D(*(x, y)) -> +(*(y, D(x)), *(x, D(y))) D(-(x, y)) -> -(D(x), D(y)) D(minus(x)) -> minus(D(x)) D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2))) D(ln(x)) -> div(D(x), x) D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: D(t) -> 1 D(constant) -> 0 D(+(x, y)) -> +(D(x), D(y)) D(*(x, y)) -> +(*(y, D(x)), *(x, D(y))) D(-(x, y)) -> -(D(x), D(y)) D(minus(x)) -> minus(D(x)) D(div(x, y)) -> -(div(D(x), y), div(*(x, D(y)), pow(y, 2))) D(ln(x)) -> div(D(x), x) D(pow(x, y)) -> +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y))) S is empty. Rewrite Strategy: INNERMOST