/export/starexec/sandbox2/solver/bin/starexec_run_tct_rci /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),?) * Step 1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) f(0(),s(0()),X) -> f(X,double(X),X) g(X,Y) -> X g(X,Y) -> Y - Signature: {+/2,double/1,f/3,g/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {+,double,f,g} and constructors {0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) f(0(),s(0()),X) -> f(X,double(X),X) g(X,Y) -> X g(X,Y) -> Y - Signature: {+/2,double/1,f/3,g/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {+,double,f,g} and constructors {0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) f(0(),s(0()),X) -> f(X,double(X),X) g(X,Y) -> X g(X,Y) -> Y - Signature: {+/2,double/1,f/3,g/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {+,double,f,g} and constructors {0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: +(x,y){y -> s(y)} = +(x,s(y)) ->^+ s(+(x,y)) = C[+(x,y) = +(x,y){}] ** Step 1.b:1: DependencyPairs. MAYBE + Considered Problem: - Strict TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) f(0(),s(0()),X) -> f(X,double(X),X) g(X,Y) -> X g(X,Y) -> Y - Signature: {+/2,double/1,f/3,g/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {+,double,f,g} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs +#(X,0()) -> c_1() +#(X,s(Y)) -> c_2(+#(X,Y)) double#(X) -> c_3(+#(X,X)) f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) g#(X,Y) -> c_5() g#(X,Y) -> c_6() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. MAYBE + Considered Problem: - Strict DPs: +#(X,0()) -> c_1() +#(X,s(Y)) -> c_2(+#(X,Y)) double#(X) -> c_3(+#(X,X)) f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) g#(X,Y) -> c_5() g#(X,Y) -> c_6() - Weak TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) f(0(),s(0()),X) -> f(X,double(X),X) g(X,Y) -> X g(X,Y) -> Y - Signature: {+/2,double/1,f/3,g/2,+#/2,double#/1,f#/3,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,double#,f#,g#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,5,6} by application of Pre({1,5,6}) = {2,3}. Here rules are labelled as follows: 1: +#(X,0()) -> c_1() 2: +#(X,s(Y)) -> c_2(+#(X,Y)) 3: double#(X) -> c_3(+#(X,X)) 4: f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) 5: g#(X,Y) -> c_5() 6: g#(X,Y) -> c_6() ** Step 1.b:3: RemoveWeakSuffixes. MAYBE + Considered Problem: - Strict DPs: +#(X,s(Y)) -> c_2(+#(X,Y)) double#(X) -> c_3(+#(X,X)) f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) - Weak DPs: +#(X,0()) -> c_1() g#(X,Y) -> c_5() g#(X,Y) -> c_6() - Weak TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) f(0(),s(0()),X) -> f(X,double(X),X) g(X,Y) -> X g(X,Y) -> Y - Signature: {+/2,double/1,f/3,g/2,+#/2,double#/1,f#/3,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,double#,f#,g#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:+#(X,s(Y)) -> c_2(+#(X,Y)) -->_1 +#(X,0()) -> c_1():4 -->_1 +#(X,s(Y)) -> c_2(+#(X,Y)):1 2:S:double#(X) -> c_3(+#(X,X)) -->_1 +#(X,0()) -> c_1():4 -->_1 +#(X,s(Y)) -> c_2(+#(X,Y)):1 3:S:f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) -->_1 f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)):3 -->_2 double#(X) -> c_3(+#(X,X)):2 4:W:+#(X,0()) -> c_1() 5:W:g#(X,Y) -> c_5() 6:W:g#(X,Y) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: g#(X,Y) -> c_6() 5: g#(X,Y) -> c_5() 4: +#(X,0()) -> c_1() ** Step 1.b:4: UsableRules. MAYBE + Considered Problem: - Strict DPs: +#(X,s(Y)) -> c_2(+#(X,Y)) double#(X) -> c_3(+#(X,X)) f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) - Weak TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) f(0(),s(0()),X) -> f(X,double(X),X) g(X,Y) -> X g(X,Y) -> Y - Signature: {+/2,double/1,f/3,g/2,+#/2,double#/1,f#/3,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,double#,f#,g#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) +#(X,s(Y)) -> c_2(+#(X,Y)) double#(X) -> c_3(+#(X,X)) f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) ** Step 1.b:5: DecomposeDG. MAYBE + Considered Problem: - Strict DPs: +#(X,s(Y)) -> c_2(+#(X,Y)) double#(X) -> c_3(+#(X,X)) f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) - Weak TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) - Signature: {+/2,double/1,f/3,g/2,+#/2,double#/1,f#/3,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,double#,f#,g#} and constructors {0,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) and a lower component +#(X,s(Y)) -> c_2(+#(X,Y)) double#(X) -> c_3(+#(X,X)) Further, following extension rules are added to the lower component. f#(0(),s(0()),X) -> double#(X) f#(0(),s(0()),X) -> f#(X,double(X),X) *** Step 1.b:5.a:1: SimplifyRHS. MAYBE + Considered Problem: - Strict DPs: f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) - Weak TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) - Signature: {+/2,double/1,f/3,g/2,+#/2,double#/1,f#/3,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,double#,f#,g#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)) -->_1 f#(0(),s(0()),X) -> c_4(f#(X,double(X),X),double#(X)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(0(),s(0()),X) -> c_4(f#(X,double(X),X)) *** Step 1.b:5.a:2: Failure MAYBE + Considered Problem: - Strict DPs: f#(0(),s(0()),X) -> c_4(f#(X,double(X),X)) - Weak TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) - Signature: {+/2,double/1,f/3,g/2,+#/2,double#/1,f#/3,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,double#,f#,g#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. *** Step 1.b:5.b:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +#(X,s(Y)) -> c_2(+#(X,Y)) double#(X) -> c_3(+#(X,X)) - Weak DPs: f#(0(),s(0()),X) -> double#(X) f#(0(),s(0()),X) -> f#(X,double(X),X) - Weak TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) - Signature: {+/2,double/1,f/3,g/2,+#/2,double#/1,f#/3,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,double#,f#,g#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1} Following symbols are considered usable: {+#,double#,f#,g#} TcT has computed the following interpretation: p(+) = [0] p(0) = [0] p(double) = [0] p(f) = [0] p(g) = [0] p(s) = [0] p(+#) = [0] p(double#) = [10] p(f#) = [10] p(g#) = [1] p(c_1) = [0] p(c_2) = [4] x1 + [0] p(c_3) = [2] x1 + [2] p(c_4) = [2] p(c_5) = [0] p(c_6) = [0] Following rules are strictly oriented: double#(X) = [10] > [2] = c_3(+#(X,X)) Following rules are (at-least) weakly oriented: +#(X,s(Y)) = [0] >= [0] = c_2(+#(X,Y)) f#(0(),s(0()),X) = [10] >= [10] = double#(X) f#(0(),s(0()),X) = [10] >= [10] = f#(X,double(X),X) *** Step 1.b:5.b:2: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: +#(X,s(Y)) -> c_2(+#(X,Y)) - Weak DPs: double#(X) -> c_3(+#(X,X)) f#(0(),s(0()),X) -> double#(X) f#(0(),s(0()),X) -> f#(X,double(X),X) - Weak TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) - Signature: {+/2,double/1,f/3,g/2,+#/2,double#/1,f#/3,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,double#,f#,g#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1} Following symbols are considered usable: {+#,double#,f#,g#} TcT has computed the following interpretation: p(+) = [6] x1 + [4] x2 + [0] p(0) = [0] p(double) = [1] p(f) = [1] x2 + [2] x3 + [8] p(g) = [1] x2 + [0] p(s) = [1] x1 + [4] p(+#) = [1] x2 + [0] p(double#) = [4] x1 + [10] p(f#) = [8] x3 + [10] p(g#) = [2] x2 + [2] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [4] x1 + [0] p(c_4) = [1] x1 + [1] p(c_5) = [2] p(c_6) = [1] Following rules are strictly oriented: +#(X,s(Y)) = [1] Y + [4] > [1] Y + [0] = c_2(+#(X,Y)) Following rules are (at-least) weakly oriented: double#(X) = [4] X + [10] >= [4] X + [0] = c_3(+#(X,X)) f#(0(),s(0()),X) = [8] X + [10] >= [4] X + [10] = double#(X) f#(0(),s(0()),X) = [8] X + [10] >= [8] X + [10] = f#(X,double(X),X) *** Step 1.b:5.b:3: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: +#(X,s(Y)) -> c_2(+#(X,Y)) double#(X) -> c_3(+#(X,X)) f#(0(),s(0()),X) -> double#(X) f#(0(),s(0()),X) -> f#(X,double(X),X) - Weak TRS: +(X,0()) -> X +(X,s(Y)) -> s(+(X,Y)) double(X) -> +(X,X) - Signature: {+/2,double/1,f/3,g/2,+#/2,double#/1,f#/3,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,double#,f#,g#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),?)