/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 1 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 3 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 361 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 116 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 1596 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 539 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 310 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 94 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 158 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) FinalProof [FINISHED, 0 ms] (40) BOUNDS(1, n^2) (41) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (42) CpxTRS (43) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (44) typed CpxTrs (45) OrderProof [LOWER BOUND(ID), 0 ms] (46) typed CpxTrs (47) RewriteLemmaProof [LOWER BOUND(ID), 236 ms] (48) BEST (49) proven lower bound (50) LowerBoundPropagationProof [FINISHED, 0 ms] (51) BOUNDS(n^1, INF) (52) typed CpxTrs (53) RewriteLemmaProof [LOWER BOUND(ID), 322 ms] (54) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: sort#2(Nil) -> Nil sort#2(Cons(x4, x2)) -> insert#3(x4, sort#2(x2)) cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) insert#3(x2, Nil) -> Cons(x2, Nil) insert#3(x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) leq#2(0, x8) -> True leq#2(S(x12), 0) -> False leq#2(S(x4), S(x2)) -> leq#2(x4, x2) main(x1) -> sort#2(x1) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: sort#2(Nil) -> Nil [1] sort#2(Cons(x4, x2)) -> insert#3(x4, sort#2(x2)) [1] cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) [1] insert#3(x2, Nil) -> Cons(x2, Nil) [1] insert#3(x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1] leq#2(0, x8) -> True [1] leq#2(S(x12), 0) -> False [1] leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] main(x1) -> sort#2(x1) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sort#2(Nil) -> Nil [1] sort#2(Cons(x4, x2)) -> insert#3(x4, sort#2(x2)) [1] cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) [1] insert#3(x2, Nil) -> Cons(x2, Nil) [1] insert#3(x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1] leq#2(0, x8) -> True [1] leq#2(S(x12), 0) -> False [1] leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] main(x1) -> sort#2(x1) [1] The TRS has the following type information: sort#2 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons Cons :: 0:S -> Nil:Cons -> Nil:Cons insert#3 :: 0:S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0:S -> 0:S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq#2 :: 0:S -> 0:S -> True:False 0 :: 0:S S :: 0:S -> 0:S main :: Nil:Cons -> Nil:Cons Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: main_1 (c) The following functions are completely defined: sort#2_1 leq#2_2 insert#3_2 cond_insert_ord_x_ys_1_4 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sort#2(Nil) -> Nil [1] sort#2(Cons(x4, x2)) -> insert#3(x4, sort#2(x2)) [1] cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) [1] insert#3(x2, Nil) -> Cons(x2, Nil) [1] insert#3(x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1] leq#2(0, x8) -> True [1] leq#2(S(x12), 0) -> False [1] leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] main(x1) -> sort#2(x1) [1] The TRS has the following type information: sort#2 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons Cons :: 0:S -> Nil:Cons -> Nil:Cons insert#3 :: 0:S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0:S -> 0:S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq#2 :: 0:S -> 0:S -> True:False 0 :: 0:S S :: 0:S -> 0:S main :: Nil:Cons -> Nil:Cons Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sort#2(Nil) -> Nil [1] sort#2(Cons(x4, Nil)) -> insert#3(x4, Nil) [2] sort#2(Cons(x4, Cons(x4', x2'))) -> insert#3(x4, insert#3(x4', sort#2(x2'))) [2] cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) [1] insert#3(x2, Nil) -> Cons(x2, Nil) [1] insert#3(0, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(True, 0, x4, x2) [2] insert#3(S(x12'), Cons(0, x2)) -> cond_insert_ord_x_ys_1(False, S(x12'), 0, x2) [2] insert#3(S(x4''), Cons(S(x2''), x2)) -> cond_insert_ord_x_ys_1(leq#2(x4'', x2''), S(x4''), S(x2''), x2) [2] leq#2(0, x8) -> True [1] leq#2(S(x12), 0) -> False [1] leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] main(x1) -> sort#2(x1) [1] The TRS has the following type information: sort#2 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons Cons :: 0:S -> Nil:Cons -> Nil:Cons insert#3 :: 0:S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0:S -> 0:S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq#2 :: 0:S -> 0:S -> True:False 0 :: 0:S S :: 0:S -> 0:S main :: Nil:Cons -> Nil:Cons Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 True => 1 False => 0 0 => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + x2 + insert#3(x3, x1) :|: x1 >= 0, z' = x3, z1 = x1, z = 0, z'' = x2, x3 >= 0, x2 >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + x3 + (1 + x2 + x1) :|: x1 >= 0, z = 1, z' = x3, z1 = x1, z'' = x2, x3 >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(x4'', x2''), 1 + x4'', 1 + x2'', x2) :|: x4'' >= 0, z = 1 + x4'', z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + x12', 0, x2) :|: z = 1 + x12', z' = 1 + 0 + x2, x12' >= 0, x2 >= 0 insert#3(z, z') -{ 1 }-> 1 + x2 + 0 :|: z = x2, x2 >= 0, z' = 0 leq#2(z, z') -{ 1 }-> leq#2(x4, x2) :|: x4 >= 0, z' = 1 + x2, z = 1 + x4, x2 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: x8 >= 0, z = 0, z' = x8 leq#2(z, z') -{ 1 }-> 0 :|: z = 1 + x12, x12 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(x1) :|: x1 >= 0, z = x1 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 2 }-> insert#3(x4, 0) :|: z = 1 + x4 + 0, x4 >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert#3(z', z1) :|: z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z - 1, x2''), 1 + (z - 1), 1 + x2'', x2) :|: z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z - 1), 0, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 2 }-> insert#3(z - 1, 0) :|: z - 1 >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { leq#2 } { cond_insert_ord_x_ys_1, insert#3 } { sort#2 } { main } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert#3(z', z1) :|: z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z - 1, x2''), 1 + (z - 1), 1 + x2'', x2) :|: z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z - 1), 0, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 2 }-> insert#3(z - 1, 0) :|: z - 1 >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert#3}, {sort#2}, {main} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert#3(z', z1) :|: z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z - 1, x2''), 1 + (z - 1), 1 + x2'', x2) :|: z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z - 1), 0, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 2 }-> insert#3(z - 1, 0) :|: z - 1 >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert#3}, {sort#2}, {main} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: leq#2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert#3(z', z1) :|: z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z - 1, x2''), 1 + (z - 1), 1 + x2'', x2) :|: z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z - 1), 0, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 2 }-> insert#3(z - 1, 0) :|: z - 1 >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert#3}, {sort#2}, {main} Previous analysis results are: leq#2: runtime: ?, size: O(1) [1] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: leq#2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert#3(z', z1) :|: z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z - 1, x2''), 1 + (z - 1), 1 + x2'', x2) :|: z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z - 1), 0, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 2 }-> insert#3(z - 1, 0) :|: z - 1 >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert#3}, {sort#2}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert#3(z', z1) :|: z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 4 + x2'' }-> cond_insert_ord_x_ys_1(s, 1 + (z - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z - 1), 0, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 2 }-> insert#3(z - 1, 0) :|: z - 1 >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert#3}, {sort#2}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond_insert_ord_x_ys_1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' + z'' + z1 Computed SIZE bound using CoFloCo for: insert#3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert#3(z', z1) :|: z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 4 + x2'' }-> cond_insert_ord_x_ys_1(s, 1 + (z - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z - 1), 0, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 2 }-> insert#3(z - 1, 0) :|: z - 1 >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert#3}, {sort#2}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: ?, size: O(n^1) [2 + z' + z'' + z1] insert#3: runtime: ?, size: O(n^1) [1 + z + z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond_insert_ord_x_ys_1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 7*z1 Computed RUNTIME bound using CoFloCo for: insert#3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 6 + 7*z' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert#3(z', z1) :|: z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 4 + x2'' }-> cond_insert_ord_x_ys_1(s, 1 + (z - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z - 1), 0, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 2 }-> insert#3(z - 1, 0) :|: z - 1 >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {sort#2}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert#3: runtime: O(n^1) [6 + 7*z'], size: O(n^1) [1 + z + z'] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s1 :|: s1 >= 0, s1 <= z' + z1 + 1, z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 6 + 7*x2 }-> s2 :|: s2 >= 0, s2 <= 0 + x4 + x2 + 2, x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ -1 + 7*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + 0 + (z' - 1) + 2, z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 8 + 7*x2 + x2'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 8 }-> s'' :|: s'' >= 0, s'' <= z - 1 + 0 + 1, z - 1 >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {sort#2}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert#3: runtime: O(n^1) [6 + 7*z'], size: O(n^1) [1 + z + z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: sort#2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s1 :|: s1 >= 0, s1 <= z' + z1 + 1, z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 6 + 7*x2 }-> s2 :|: s2 >= 0, s2 <= 0 + x4 + x2 + 2, x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ -1 + 7*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + 0 + (z' - 1) + 2, z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 8 + 7*x2 + x2'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 8 }-> s'' :|: s'' >= 0, s'' <= z - 1 + 0 + 1, z - 1 >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {sort#2}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert#3: runtime: O(n^1) [6 + 7*z'], size: O(n^1) [1 + z + z'] sort#2: runtime: ?, size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: sort#2 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 15 + 21*z + 14*z^2 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s1 :|: s1 >= 0, s1 <= z' + z1 + 1, z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 6 + 7*x2 }-> s2 :|: s2 >= 0, s2 <= 0 + x4 + x2 + 2, x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ -1 + 7*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + 0 + (z' - 1) + 2, z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 8 + 7*x2 + x2'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> sort#2(z) :|: z >= 0 sort#2(z) -{ 8 }-> s'' :|: s'' >= 0, s'' <= z - 1 + 0 + 1, z - 1 >= 0 sort#2(z) -{ 2 }-> insert#3(x4, insert#3(x4', sort#2(x2'))) :|: z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert#3: runtime: O(n^1) [6 + 7*z'], size: O(n^1) [1 + z + z'] sort#2: runtime: O(n^2) [15 + 21*z + 14*z^2], size: O(n^1) [z] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s1 :|: s1 >= 0, s1 <= z' + z1 + 1, z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 6 + 7*x2 }-> s2 :|: s2 >= 0, s2 <= 0 + x4 + x2 + 2, x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ -1 + 7*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + 0 + (z' - 1) + 2, z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 8 + 7*x2 + x2'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 16 + 21*z + 14*z^2 }-> s8 :|: s8 >= 0, s8 <= z, z >= 0 sort#2(z) -{ 8 }-> s'' :|: s'' >= 0, s'' <= z - 1 + 0 + 1, z - 1 >= 0 sort#2(z) -{ 29 + 7*s5 + 7*s6 + 21*x2' + 14*x2'^2 }-> s7 :|: s5 >= 0, s5 <= x2', s6 >= 0, s6 <= x4' + s5 + 1, s7 >= 0, s7 <= x4 + s6 + 1, z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert#3: runtime: O(n^1) [6 + 7*z'], size: O(n^1) [1 + z + z'] sort#2: runtime: O(n^2) [15 + 21*z + 14*z^2], size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: main after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s1 :|: s1 >= 0, s1 <= z' + z1 + 1, z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 6 + 7*x2 }-> s2 :|: s2 >= 0, s2 <= 0 + x4 + x2 + 2, x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ -1 + 7*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + 0 + (z' - 1) + 2, z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 8 + 7*x2 + x2'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 16 + 21*z + 14*z^2 }-> s8 :|: s8 >= 0, s8 <= z, z >= 0 sort#2(z) -{ 8 }-> s'' :|: s'' >= 0, s'' <= z - 1 + 0 + 1, z - 1 >= 0 sort#2(z) -{ 29 + 7*s5 + 7*s6 + 21*x2' + 14*x2'^2 }-> s7 :|: s5 >= 0, s5 <= x2', s6 >= 0, s6 <= x4' + s5 + 1, s7 >= 0, s7 <= x4 + s6 + 1, z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert#3: runtime: O(n^1) [6 + 7*z'], size: O(n^1) [1 + z + z'] sort#2: runtime: O(n^2) [15 + 21*z + 14*z^2], size: O(n^1) [z] main: runtime: ?, size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: main after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 16 + 21*z + 14*z^2 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s1 :|: s1 >= 0, s1 <= z' + z1 + 1, z1 >= 0, z = 0, z' >= 0, z'' >= 0 insert#3(z, z') -{ 6 + 7*x2 }-> s2 :|: s2 >= 0, s2 <= 0 + x4 + x2 + 2, x4 >= 0, z' = 1 + x4 + x2, z = 0, x2 >= 0 insert#3(z, z') -{ -1 + 7*z' }-> s3 :|: s3 >= 0, s3 <= 1 + (z - 1) + 0 + (z' - 1) + 2, z - 1 >= 0, z' - 1 >= 0 insert#3(z, z') -{ 8 + 7*x2 + x2'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z - 1 >= 0, z' = 1 + (1 + x2'') + x2, x2'' >= 0, x2 >= 0 insert#3(z, z') -{ 1 }-> 1 + z + 0 :|: z >= 0, z' = 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 16 + 21*z + 14*z^2 }-> s8 :|: s8 >= 0, s8 <= z, z >= 0 sort#2(z) -{ 8 }-> s'' :|: s'' >= 0, s'' <= z - 1 + 0 + 1, z - 1 >= 0 sort#2(z) -{ 29 + 7*s5 + 7*s6 + 21*x2' + 14*x2'^2 }-> s7 :|: s5 >= 0, s5 <= x2', s6 >= 0, s6 <= x4' + s5 + 1, s7 >= 0, s7 <= x4 + s6 + 1, z = 1 + x4 + (1 + x4' + x2'), x2' >= 0, x4 >= 0, x4' >= 0 sort#2(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert#3: runtime: O(n^1) [6 + 7*z'], size: O(n^1) [1 + z + z'] sort#2: runtime: O(n^2) [15 + 21*z + 14*z^2], size: O(n^1) [z] main: runtime: O(n^2) [16 + 21*z + 14*z^2], size: O(n^1) [z] ---------------------------------------- (39) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (40) BOUNDS(1, n^2) ---------------------------------------- (41) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (42) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sort#2(Nil) -> Nil sort#2(Cons(x4, x2)) -> insert#3(x4, sort#2(x2)) cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) insert#3(x2, Nil) -> Cons(x2, Nil) insert#3(x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) leq#2(0', x8) -> True leq#2(S(x12), 0') -> False leq#2(S(x4), S(x2)) -> leq#2(x4, x2) main(x1) -> sort#2(x1) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (43) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (44) Obligation: Innermost TRS: Rules: sort#2(Nil) -> Nil sort#2(Cons(x4, x2)) -> insert#3(x4, sort#2(x2)) cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) insert#3(x2, Nil) -> Cons(x2, Nil) insert#3(x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) leq#2(0', x8) -> True leq#2(S(x12), 0') -> False leq#2(S(x4), S(x2)) -> leq#2(x4, x2) main(x1) -> sort#2(x1) Types: sort#2 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons Cons :: 0':S -> Nil:Cons -> Nil:Cons insert#3 :: 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq#2 :: 0':S -> 0':S -> True:False 0' :: 0':S S :: 0':S -> 0':S main :: Nil:Cons -> Nil:Cons hole_Nil:Cons1_0 :: Nil:Cons hole_0':S2_0 :: 0':S hole_True:False3_0 :: True:False gen_Nil:Cons4_0 :: Nat -> Nil:Cons gen_0':S5_0 :: Nat -> 0':S ---------------------------------------- (45) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sort#2, insert#3, leq#2 They will be analysed ascendingly in the following order: insert#3 < sort#2 leq#2 < insert#3 ---------------------------------------- (46) Obligation: Innermost TRS: Rules: sort#2(Nil) -> Nil sort#2(Cons(x4, x2)) -> insert#3(x4, sort#2(x2)) cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) insert#3(x2, Nil) -> Cons(x2, Nil) insert#3(x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) leq#2(0', x8) -> True leq#2(S(x12), 0') -> False leq#2(S(x4), S(x2)) -> leq#2(x4, x2) main(x1) -> sort#2(x1) Types: sort#2 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons Cons :: 0':S -> Nil:Cons -> Nil:Cons insert#3 :: 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq#2 :: 0':S -> 0':S -> True:False 0' :: 0':S S :: 0':S -> 0':S main :: Nil:Cons -> Nil:Cons hole_Nil:Cons1_0 :: Nil:Cons hole_0':S2_0 :: 0':S hole_True:False3_0 :: True:False gen_Nil:Cons4_0 :: Nat -> Nil:Cons gen_0':S5_0 :: Nat -> 0':S Generator Equations: gen_Nil:Cons4_0(0) <=> Nil gen_Nil:Cons4_0(+(x, 1)) <=> Cons(0', gen_Nil:Cons4_0(x)) gen_0':S5_0(0) <=> 0' gen_0':S5_0(+(x, 1)) <=> S(gen_0':S5_0(x)) The following defined symbols remain to be analysed: leq#2, sort#2, insert#3 They will be analysed ascendingly in the following order: insert#3 < sort#2 leq#2 < insert#3 ---------------------------------------- (47) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: leq#2(gen_0':S5_0(n7_0), gen_0':S5_0(n7_0)) -> True, rt in Omega(1 + n7_0) Induction Base: leq#2(gen_0':S5_0(0), gen_0':S5_0(0)) ->_R^Omega(1) True Induction Step: leq#2(gen_0':S5_0(+(n7_0, 1)), gen_0':S5_0(+(n7_0, 1))) ->_R^Omega(1) leq#2(gen_0':S5_0(n7_0), gen_0':S5_0(n7_0)) ->_IH True We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (48) Complex Obligation (BEST) ---------------------------------------- (49) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: sort#2(Nil) -> Nil sort#2(Cons(x4, x2)) -> insert#3(x4, sort#2(x2)) cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) insert#3(x2, Nil) -> Cons(x2, Nil) insert#3(x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) leq#2(0', x8) -> True leq#2(S(x12), 0') -> False leq#2(S(x4), S(x2)) -> leq#2(x4, x2) main(x1) -> sort#2(x1) Types: sort#2 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons Cons :: 0':S -> Nil:Cons -> Nil:Cons insert#3 :: 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq#2 :: 0':S -> 0':S -> True:False 0' :: 0':S S :: 0':S -> 0':S main :: Nil:Cons -> Nil:Cons hole_Nil:Cons1_0 :: Nil:Cons hole_0':S2_0 :: 0':S hole_True:False3_0 :: True:False gen_Nil:Cons4_0 :: Nat -> Nil:Cons gen_0':S5_0 :: Nat -> 0':S Generator Equations: gen_Nil:Cons4_0(0) <=> Nil gen_Nil:Cons4_0(+(x, 1)) <=> Cons(0', gen_Nil:Cons4_0(x)) gen_0':S5_0(0) <=> 0' gen_0':S5_0(+(x, 1)) <=> S(gen_0':S5_0(x)) The following defined symbols remain to be analysed: leq#2, sort#2, insert#3 They will be analysed ascendingly in the following order: insert#3 < sort#2 leq#2 < insert#3 ---------------------------------------- (50) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (51) BOUNDS(n^1, INF) ---------------------------------------- (52) Obligation: Innermost TRS: Rules: sort#2(Nil) -> Nil sort#2(Cons(x4, x2)) -> insert#3(x4, sort#2(x2)) cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) cond_insert_ord_x_ys_1(False, x3, x2, x1) -> Cons(x2, insert#3(x3, x1)) insert#3(x2, Nil) -> Cons(x2, Nil) insert#3(x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) leq#2(0', x8) -> True leq#2(S(x12), 0') -> False leq#2(S(x4), S(x2)) -> leq#2(x4, x2) main(x1) -> sort#2(x1) Types: sort#2 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons Cons :: 0':S -> Nil:Cons -> Nil:Cons insert#3 :: 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq#2 :: 0':S -> 0':S -> True:False 0' :: 0':S S :: 0':S -> 0':S main :: Nil:Cons -> Nil:Cons hole_Nil:Cons1_0 :: Nil:Cons hole_0':S2_0 :: 0':S hole_True:False3_0 :: True:False gen_Nil:Cons4_0 :: Nat -> Nil:Cons gen_0':S5_0 :: Nat -> 0':S Lemmas: leq#2(gen_0':S5_0(n7_0), gen_0':S5_0(n7_0)) -> True, rt in Omega(1 + n7_0) Generator Equations: gen_Nil:Cons4_0(0) <=> Nil gen_Nil:Cons4_0(+(x, 1)) <=> Cons(0', gen_Nil:Cons4_0(x)) gen_0':S5_0(0) <=> 0' gen_0':S5_0(+(x, 1)) <=> S(gen_0':S5_0(x)) The following defined symbols remain to be analysed: insert#3, sort#2 They will be analysed ascendingly in the following order: insert#3 < sort#2 ---------------------------------------- (53) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sort#2(gen_Nil:Cons4_0(n428_0)) -> *6_0, rt in Omega(n428_0) Induction Base: sort#2(gen_Nil:Cons4_0(0)) Induction Step: sort#2(gen_Nil:Cons4_0(+(n428_0, 1))) ->_R^Omega(1) insert#3(0', sort#2(gen_Nil:Cons4_0(n428_0))) ->_IH insert#3(0', *6_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (54) BOUNDS(1, INF)