/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^2)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () *** Step 1.a:1.a:1: Ara. MAYBE + Considered Problem: - Strict TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: Ara {minDegree = 1, maxDegree = 3, araTimeout = 15, araRuleShifting = Just 1, isBestCase = True, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "0") :: [] -(0)-> "A"(0) F (TrsFun "Cons") :: ["A"(0) x "A"(1)] -(1)-> "A"(1) F (TrsFun "Cons") :: ["A"(0) x "A"(0)] -(0)-> "A"(0) F (TrsFun "Nil") :: [] -(0)-> "A"(1) F (TrsFun "Nil") :: [] -(0)-> "A"(0) F (TrsFun "S") :: ["A"(0)] -(0)-> "A"(0) F (TrsFun "main") :: ["A"(1) x "A"(0)] -(1)-> "A"(0) F (TrsFun "map#2") :: ["A"(0) x "A"(1)] -(1)-> "A"(0) F (TrsFun "plus_x") :: ["A"(0)] -(0)-> "A"(0) F (TrsFun "plus_x#1") :: ["A"(0) x "A"(0)] -(1)-> "A"(0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) 2. Weak: *** Step 1.a:1.b:1: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: map#2(plus_x(x),z){z -> Cons(y,z)} = map#2(plus_x(x),Cons(y,z)) ->^+ Cons(plus_x#1(x,y),map#2(plus_x(x),z)) = C[map#2(plus_x(x),z) = map#2(plus_x(x),z){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs main#(x5,x12) -> c_1(map#2#(plus_x(x12),x5)) map#2#(plus_x(x2),Nil()) -> c_2() map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) plus_x#1#(0(),x8) -> c_4() plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: main#(x5,x12) -> c_1(map#2#(plus_x(x12),x5)) map#2#(plus_x(x2),Nil()) -> c_2() map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) plus_x#1#(0(),x8) -> c_4() plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) - Weak TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/2 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,4} by application of Pre({2,4}) = {1,3,5}. Here rules are labelled as follows: 1: main#(x5,x12) -> c_1(map#2#(plus_x(x12),x5)) 2: map#2#(plus_x(x2),Nil()) -> c_2() 3: map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) 4: plus_x#1#(0(),x8) -> c_4() 5: plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) ** Step 1.b:3: RemoveWeakSuffixes. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: main#(x5,x12) -> c_1(map#2#(plus_x(x12),x5)) map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) - Weak DPs: map#2#(plus_x(x2),Nil()) -> c_2() plus_x#1#(0(),x8) -> c_4() - Weak TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/2 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:main#(x5,x12) -> c_1(map#2#(plus_x(x12),x5)) -->_1 map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)):2 -->_1 map#2#(plus_x(x2),Nil()) -> c_2():4 2:S:map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) -->_1 plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)):3 -->_1 plus_x#1#(0(),x8) -> c_4():5 -->_2 map#2#(plus_x(x2),Nil()) -> c_2():4 -->_2 map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)):2 3:S:plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) -->_1 plus_x#1#(0(),x8) -> c_4():5 -->_1 plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)):3 4:W:map#2#(plus_x(x2),Nil()) -> c_2() 5:W:plus_x#1#(0(),x8) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: map#2#(plus_x(x2),Nil()) -> c_2() 5: plus_x#1#(0(),x8) -> c_4() ** Step 1.b:4: RemoveHeads. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: main#(x5,x12) -> c_1(map#2#(plus_x(x12),x5)) map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) - Weak TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/2 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:main#(x5,x12) -> c_1(map#2#(plus_x(x12),x5)) -->_1 map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)):2 2:S:map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) -->_1 plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)):3 -->_2 map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)):2 3:S:plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) -->_1 plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)):3 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(1,main#(x5,x12) -> c_1(map#2#(plus_x(x12),x5)))] ** Step 1.b:5: UsableRules. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) - Weak TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/2 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) ** Step 1.b:6: DecomposeDG. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/2 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) and a lower component plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) Further, following extension rules are added to the lower component. map#2#(plus_x(x6),Cons(x4,x2)) -> map#2#(plus_x(x6),x2) map#2#(plus_x(x6),Cons(x4,x2)) -> plus_x#1#(x6,x4) *** Step 1.b:6.a:1: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/2 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)) -->_2 map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(plus_x#1#(x6,x4),map#2#(plus_x(x6),x2)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(map#2#(plus_x(x6),x2)) *** Step 1.b:6.a:2: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(map#2#(plus_x(x6),x2)) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/1 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: {main#,map#2#,plus_x#1#} TcT has computed the following interpretation: p(0) = [1] p(Cons) = [1] x2 + [1] p(Nil) = [1] p(S) = [8] p(main) = [2] p(map#2) = [2] x1 + [0] p(plus_x) = [1] x1 + [0] p(plus_x#1) = [1] x2 + [8] p(main#) = [1] x1 + [4] p(map#2#) = [2] x1 + [8] x2 + [8] p(plus_x#1#) = [2] x2 + [0] p(c_1) = [0] p(c_2) = [1] p(c_3) = [1] x1 + [4] p(c_4) = [1] p(c_5) = [1] x1 + [2] Following rules are strictly oriented: map#2#(plus_x(x6),Cons(x4,x2)) = [8] x2 + [2] x6 + [16] > [8] x2 + [2] x6 + [12] = c_3(map#2#(plus_x(x6),x2)) Following rules are (at-least) weakly oriented: *** Step 1.b:6.a:3: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: map#2#(plus_x(x6),Cons(x4,x2)) -> c_3(map#2#(plus_x(x6),x2)) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/1 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:6.b:1: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) - Weak DPs: map#2#(plus_x(x6),Cons(x4,x2)) -> map#2#(plus_x(x6),x2) map#2#(plus_x(x6),Cons(x4,x2)) -> plus_x#1#(x6,x4) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/2 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(Cons) = [1] x1 + [1] x2 + [10] p(Nil) = [8] p(S) = [1] x1 + [4] p(main) = [1] x2 + [2] p(map#2) = [2] x1 + [0] p(plus_x) = [1] x1 + [1] p(plus_x#1) = [0] p(main#) = [1] x1 + [1] p(map#2#) = [8] x1 + [1] x2 + [2] p(plus_x#1#) = [4] x1 + [1] p(c_1) = [2] x1 + [0] p(c_2) = [1] p(c_3) = [4] x1 + [0] p(c_4) = [1] p(c_5) = [1] x1 + [8] Following rules are strictly oriented: plus_x#1#(S(x12),x14) = [4] x12 + [17] > [4] x12 + [9] = c_5(plus_x#1#(x12,x14)) Following rules are (at-least) weakly oriented: map#2#(plus_x(x6),Cons(x4,x2)) = [1] x2 + [1] x4 + [8] x6 + [20] >= [1] x2 + [8] x6 + [10] = map#2#(plus_x(x6),x2) map#2#(plus_x(x6),Cons(x4,x2)) = [1] x2 + [1] x4 + [8] x6 + [20] >= [4] x6 + [1] = plus_x#1#(x6,x4) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** Step 1.b:6.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: map#2#(plus_x(x6),Cons(x4,x2)) -> map#2#(plus_x(x6),x2) map#2#(plus_x(x6),Cons(x4,x2)) -> plus_x#1#(x6,x4) plus_x#1#(S(x12),x14) -> c_5(plus_x#1#(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2,main#/2,map#2#/2,plus_x#1#/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1,c_1/1,c_2/0,c_3/2 ,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {main#,map#2#,plus_x#1#} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))