/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 1 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 4 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 336 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 88 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 361 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 105 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 601 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) FinalProof [FINISHED, 0 ms] (34) BOUNDS(1, n^2) (35) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (36) TRS for Loop Detection (37) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (38) BEST (39) proven lower bound (40) LowerBoundPropagationProof [FINISHED, 0 ms] (41) BOUNDS(n^1, INF) (42) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: plus_x#1(0, x8) -> x8 plus_x#1(S(x12), x14) -> S(plus_x#1(x12, x14)) map#2(plus_x(x2), Nil) -> Nil map#2(plus_x(x6), Cons(x4, x2)) -> Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2)) main(x5, x12) -> map#2(plus_x(x12), x5) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: plus_x#1(0, x8) -> x8 [1] plus_x#1(S(x12), x14) -> S(plus_x#1(x12, x14)) [1] map#2(plus_x(x2), Nil) -> Nil [1] map#2(plus_x(x6), Cons(x4, x2)) -> Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2)) [1] main(x5, x12) -> map#2(plus_x(x12), x5) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus_x#1(0, x8) -> x8 [1] plus_x#1(S(x12), x14) -> S(plus_x#1(x12, x14)) [1] map#2(plus_x(x2), Nil) -> Nil [1] map#2(plus_x(x6), Cons(x4, x2)) -> Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2)) [1] main(x5, x12) -> map#2(plus_x(x12), x5) [1] The TRS has the following type information: plus_x#1 :: 0:S -> 0:S -> 0:S 0 :: 0:S S :: 0:S -> 0:S map#2 :: plus_x -> Nil:Cons -> Nil:Cons plus_x :: 0:S -> plus_x Nil :: Nil:Cons Cons :: 0:S -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> 0:S -> Nil:Cons Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: plus_x#1_2 map#2_2 main_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus_x#1(0, x8) -> x8 [1] plus_x#1(S(x12), x14) -> S(plus_x#1(x12, x14)) [1] map#2(plus_x(x2), Nil) -> Nil [1] map#2(plus_x(x6), Cons(x4, x2)) -> Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2)) [1] main(x5, x12) -> map#2(plus_x(x12), x5) [1] The TRS has the following type information: plus_x#1 :: 0:S -> 0:S -> 0:S 0 :: 0:S S :: 0:S -> 0:S map#2 :: plus_x -> Nil:Cons -> Nil:Cons plus_x :: 0:S -> plus_x Nil :: Nil:Cons Cons :: 0:S -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> 0:S -> Nil:Cons const :: plus_x Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus_x#1(0, x8) -> x8 [1] plus_x#1(S(x12), x14) -> S(plus_x#1(x12, x14)) [1] map#2(plus_x(x2), Nil) -> Nil [1] map#2(plus_x(x6), Cons(x4, x2)) -> Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2)) [1] main(x5, x12) -> map#2(plus_x(x12), x5) [1] The TRS has the following type information: plus_x#1 :: 0:S -> 0:S -> 0:S 0 :: 0:S S :: 0:S -> 0:S map#2 :: plus_x -> Nil:Cons -> Nil:Cons plus_x :: 0:S -> plus_x Nil :: Nil:Cons Cons :: 0:S -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> 0:S -> Nil:Cons const :: plus_x Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 Nil => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 1 }-> map#2(1 + x12, x5) :|: x5 >= 0, x12 >= 0, z = x5, z' = x12 map#2(z, z') -{ 1 }-> 0 :|: z = 1 + x2, x2 >= 0, z' = 0 map#2(z, z') -{ 1 }-> 1 + plus_x#1(x6, x4) + map#2(1 + x6, x2) :|: x4 >= 0, z = 1 + x6, z' = 1 + x4 + x2, x6 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> x8 :|: x8 >= 0, z = 0, z' = x8 plus_x#1(z, z') -{ 1 }-> 1 + plus_x#1(x12, x14) :|: z = 1 + x12, x12 >= 0, x14 >= 0, z' = x14 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 1 }-> map#2(1 + z', z) :|: z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, x4) + map#2(1 + (z - 1), x2) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, z') :|: z - 1 >= 0, z' >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus_x#1 } { map#2 } { main } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 1 }-> map#2(1 + z', z) :|: z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, x4) + map#2(1 + (z - 1), x2) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {plus_x#1}, {map#2}, {main} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 1 }-> map#2(1 + z', z) :|: z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, x4) + map#2(1 + (z - 1), x2) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {plus_x#1}, {map#2}, {main} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus_x#1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 1 }-> map#2(1 + z', z) :|: z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, x4) + map#2(1 + (z - 1), x2) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {plus_x#1}, {map#2}, {main} Previous analysis results are: plus_x#1: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus_x#1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 1 }-> map#2(1 + z', z) :|: z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, x4) + map#2(1 + (z - 1), x2) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 }-> 1 + plus_x#1(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {map#2}, {main} Previous analysis results are: plus_x#1: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 1 }-> map#2(1 + z', z) :|: z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 1 + z }-> 1 + s' + map#2(1 + (z - 1), x2) :|: s' >= 0, s' <= z - 1 + x4, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 + z }-> 1 + s :|: s >= 0, s <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {map#2}, {main} Previous analysis results are: plus_x#1: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: map#2 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z*z' + z' + z'^2 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 1 }-> map#2(1 + z', z) :|: z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 1 + z }-> 1 + s' + map#2(1 + (z - 1), x2) :|: s' >= 0, s' <= z - 1 + x4, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 + z }-> 1 + s :|: s >= 0, s <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {map#2}, {main} Previous analysis results are: plus_x#1: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] map#2: runtime: ?, size: O(n^2) [z*z' + z' + z'^2] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: map#2 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + z*z' + z' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 1 }-> map#2(1 + z', z) :|: z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 1 + z }-> 1 + s' + map#2(1 + (z - 1), x2) :|: s' >= 0, s' <= z - 1 + x4, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 + z }-> 1 + s :|: s >= 0, s <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {main} Previous analysis results are: plus_x#1: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] map#2: runtime: O(n^2) [1 + z*z' + z'], size: O(n^2) [z*z' + z' + z'^2] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 2 + 2*z + z*z' }-> s1 :|: s1 >= 0, s1 <= z * (1 + z') + z * z + z, z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 2 + x2 + x2*z + z }-> 1 + s' + s'' :|: s'' >= 0, s'' <= x2 * (1 + (z - 1)) + x2 * x2 + x2, s' >= 0, s' <= z - 1 + x4, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 + z }-> 1 + s :|: s >= 0, s <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {main} Previous analysis results are: plus_x#1: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] map#2: runtime: O(n^2) [1 + z*z' + z'], size: O(n^2) [z*z' + z' + z'^2] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: main after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z + z*z' + z^2 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 2 + 2*z + z*z' }-> s1 :|: s1 >= 0, s1 <= z * (1 + z') + z * z + z, z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 2 + x2 + x2*z + z }-> 1 + s' + s'' :|: s'' >= 0, s'' <= x2 * (1 + (z - 1)) + x2 * x2 + x2, s' >= 0, s' <= z - 1 + x4, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 + z }-> 1 + s :|: s >= 0, s <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {main} Previous analysis results are: plus_x#1: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] map#2: runtime: O(n^2) [1 + z*z' + z'], size: O(n^2) [z*z' + z' + z'^2] main: runtime: ?, size: O(n^2) [2*z + z*z' + z^2] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: main after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2 + 2*z + z*z' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: main(z, z') -{ 2 + 2*z + z*z' }-> s1 :|: s1 >= 0, s1 <= z * (1 + z') + z * z + z, z >= 0, z' >= 0 map#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 map#2(z, z') -{ 2 + x2 + x2*z + z }-> 1 + s' + s'' :|: s'' >= 0, s'' <= x2 * (1 + (z - 1)) + x2 * x2 + x2, s' >= 0, s' <= z - 1 + x4, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 plus_x#1(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus_x#1(z, z') -{ 1 + z }-> 1 + s :|: s >= 0, s <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: plus_x#1: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] map#2: runtime: O(n^2) [1 + z*z' + z'], size: O(n^2) [z*z' + z' + z'^2] main: runtime: O(n^2) [2 + 2*z + z*z'], size: O(n^2) [2*z + z*z' + z^2] ---------------------------------------- (33) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (34) BOUNDS(1, n^2) ---------------------------------------- (35) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (36) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: plus_x#1(0, x8) -> x8 plus_x#1(S(x12), x14) -> S(plus_x#1(x12, x14)) map#2(plus_x(x2), Nil) -> Nil map#2(plus_x(x6), Cons(x4, x2)) -> Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2)) main(x5, x12) -> map#2(plus_x(x12), x5) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (37) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence plus_x#1(S(x12), x14) ->^+ S(plus_x#1(x12, x14)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x12 / S(x12)]. The result substitution is [ ]. ---------------------------------------- (38) Complex Obligation (BEST) ---------------------------------------- (39) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: plus_x#1(0, x8) -> x8 plus_x#1(S(x12), x14) -> S(plus_x#1(x12, x14)) map#2(plus_x(x2), Nil) -> Nil map#2(plus_x(x6), Cons(x4, x2)) -> Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2)) main(x5, x12) -> map#2(plus_x(x12), x5) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (40) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (41) BOUNDS(n^1, INF) ---------------------------------------- (42) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: plus_x#1(0, x8) -> x8 plus_x#1(S(x12), x14) -> S(plus_x#1(x12, x14)) map#2(plus_x(x2), Nil) -> Nil map#2(plus_x(x6), Cons(x4, x2)) -> Cons(plus_x#1(x6, x4), map#2(plus_x(x6), x2)) main(x5, x12) -> map#2(plus_x(x12), x5) S is empty. Rewrite Strategy: INNERMOST