/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 84 ms] (4) BOUNDS(1, n^1) (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) @(Nil, ys) -> ys game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True game(p1, p2, Nil) -> @(p1, p2) goal(p1, p2, moves) -> game(p1, p2, moves) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) @(Nil, ys) -> ys game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True game(p1, p2, Nil) -> @(p1, p2) goal(p1, p2, moves) -> game(p1, p2, moves) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4] transitions: Cons0(0, 0) -> 0 Nil0() -> 0 Capture0() -> 0 Swap0() -> 0 True0() -> 0 False0() -> 0 @0(0, 0) -> 1 game0(0, 0, 0) -> 2 equal0(0, 0) -> 3 goal0(0, 0, 0) -> 4 @1(0, 0) -> 5 Cons1(0, 5) -> 1 Cons1(0, 0) -> 6 game1(6, 0, 0) -> 2 game1(0, 0, 0) -> 2 True1() -> 3 False1() -> 3 @1(0, 0) -> 2 game1(0, 0, 0) -> 4 Cons1(0, 5) -> 2 Cons1(0, 5) -> 5 Cons1(0, 6) -> 6 game1(6, 0, 0) -> 4 game1(0, 6, 0) -> 2 @1(6, 0) -> 2 @1(0, 0) -> 4 Cons1(0, 5) -> 4 @2(0, 0) -> 7 Cons2(0, 7) -> 2 @2(6, 0) -> 7 game1(6, 6, 0) -> 2 game1(0, 6, 0) -> 4 @1(0, 6) -> 2 @1(6, 0) -> 4 @1(0, 6) -> 5 Cons2(0, 7) -> 4 game1(6, 6, 0) -> 4 @1(6, 6) -> 2 @1(0, 6) -> 4 Cons1(0, 5) -> 7 Cons2(0, 7) -> 7 @2(0, 6) -> 7 @2(6, 6) -> 7 @1(6, 6) -> 4 0 -> 1 0 -> 2 0 -> 5 0 -> 4 0 -> 7 6 -> 2 6 -> 4 6 -> 5 6 -> 7 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) @(Nil, ys) -> ys game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True game(p1, p2, Nil) -> @(p1, p2) goal(p1, p2, moves) -> game(p1, p2, moves) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence game(p1, Cons(x', xs'), Cons(Capture, xs)) ->^+ game(Cons(x', p1), xs', xs) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [xs' / Cons(x', xs'), xs / Cons(Capture, xs)]. The result substitution is [p1 / Cons(x', p1)]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) @(Nil, ys) -> ys game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True game(p1, p2, Nil) -> @(p1, p2) goal(p1, p2, moves) -> game(p1, p2, moves) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) @(Nil, ys) -> ys game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True game(p1, p2, Nil) -> @(p1, p2) goal(p1, p2, moves) -> game(p1, p2, moves) S is empty. Rewrite Strategy: INNERMOST