/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 157 ms] (2) CpxRelTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 353 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 99 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 994 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 480 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 117 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (42) CpxRNTS (43) FinalProof [FINISHED, 0 ms] (44) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ordered(Cons(x', Cons(x, xs))) -> ordered[Ite](<(x', x), Cons(x', Cons(x, xs))) ordered(Cons(x, Nil)) -> True ordered(Nil) -> True notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> ordered(xs) The (relative) TRS S consists of the following rules: <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False ordered[Ite](True, Cons(x, xs)) -> ordered(xs) ordered[Ite](False, xs) -> False Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ordered(Cons(x', Cons(x, xs))) -> ordered[Ite](<(x', x), Cons(x', Cons(x, xs))) ordered(Cons(x, Nil)) -> True ordered(Nil) -> True notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> ordered(xs) The (relative) TRS S consists of the following rules: <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False ordered[Ite](True, Cons(x, xs)) -> ordered(xs) ordered[Ite](False, xs) -> False Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ordered(Cons(x', Cons(x, xs))) -> ordered[Ite](<(x', x), Cons(x', Cons(x, xs))) [1] ordered(Cons(x, Nil)) -> True [1] ordered(Nil) -> True [1] notEmpty(Cons(x, xs)) -> True [1] notEmpty(Nil) -> False [1] goal(xs) -> ordered(xs) [1] <(S(x), S(y)) -> <(x, y) [0] <(0, S(y)) -> True [0] <(x, 0) -> False [0] ordered[Ite](True, Cons(x, xs)) -> ordered(xs) [0] ordered[Ite](False, xs) -> False [0] Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: < => lt ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ordered(Cons(x', Cons(x, xs))) -> ordered[Ite](lt(x', x), Cons(x', Cons(x, xs))) [1] ordered(Cons(x, Nil)) -> True [1] ordered(Nil) -> True [1] notEmpty(Cons(x, xs)) -> True [1] notEmpty(Nil) -> False [1] goal(xs) -> ordered(xs) [1] lt(S(x), S(y)) -> lt(x, y) [0] lt(0, S(y)) -> True [0] lt(x, 0) -> False [0] ordered[Ite](True, Cons(x, xs)) -> ordered(xs) [0] ordered[Ite](False, xs) -> False [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ordered(Cons(x', Cons(x, xs))) -> ordered[Ite](lt(x', x), Cons(x', Cons(x, xs))) [1] ordered(Cons(x, Nil)) -> True [1] ordered(Nil) -> True [1] notEmpty(Cons(x, xs)) -> True [1] notEmpty(Nil) -> False [1] goal(xs) -> ordered(xs) [1] lt(S(x), S(y)) -> lt(x, y) [0] lt(0, S(y)) -> True [0] lt(x, 0) -> False [0] ordered[Ite](True, Cons(x, xs)) -> ordered(xs) [0] ordered[Ite](False, xs) -> False [0] The TRS has the following type information: ordered :: Cons:Nil -> True:False Cons :: S:0 -> Cons:Nil -> Cons:Nil ordered[Ite] :: True:False -> Cons:Nil -> True:False lt :: S:0 -> S:0 -> True:False Nil :: Cons:Nil True :: True:False notEmpty :: Cons:Nil -> True:False False :: True:False goal :: Cons:Nil -> True:False S :: S:0 -> S:0 0 :: S:0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: ordered_1 notEmpty_1 goal_1 (c) The following functions are completely defined: lt_2 ordered[Ite]_2 Due to the following rules being added: lt(v0, v1) -> null_lt [0] ordered[Ite](v0, v1) -> null_ordered[Ite] [0] And the following fresh constants: null_lt, null_ordered[Ite] ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ordered(Cons(x', Cons(x, xs))) -> ordered[Ite](lt(x', x), Cons(x', Cons(x, xs))) [1] ordered(Cons(x, Nil)) -> True [1] ordered(Nil) -> True [1] notEmpty(Cons(x, xs)) -> True [1] notEmpty(Nil) -> False [1] goal(xs) -> ordered(xs) [1] lt(S(x), S(y)) -> lt(x, y) [0] lt(0, S(y)) -> True [0] lt(x, 0) -> False [0] ordered[Ite](True, Cons(x, xs)) -> ordered(xs) [0] ordered[Ite](False, xs) -> False [0] lt(v0, v1) -> null_lt [0] ordered[Ite](v0, v1) -> null_ordered[Ite] [0] The TRS has the following type information: ordered :: Cons:Nil -> True:False:null_lt:null_ordered[Ite] Cons :: S:0 -> Cons:Nil -> Cons:Nil ordered[Ite] :: True:False:null_lt:null_ordered[Ite] -> Cons:Nil -> True:False:null_lt:null_ordered[Ite] lt :: S:0 -> S:0 -> True:False:null_lt:null_ordered[Ite] Nil :: Cons:Nil True :: True:False:null_lt:null_ordered[Ite] notEmpty :: Cons:Nil -> True:False:null_lt:null_ordered[Ite] False :: True:False:null_lt:null_ordered[Ite] goal :: Cons:Nil -> True:False:null_lt:null_ordered[Ite] S :: S:0 -> S:0 0 :: S:0 null_lt :: True:False:null_lt:null_ordered[Ite] null_ordered[Ite] :: True:False:null_lt:null_ordered[Ite] Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ordered(Cons(S(x''), Cons(S(y'), xs))) -> ordered[Ite](lt(x'', y'), Cons(S(x''), Cons(S(y'), xs))) [1] ordered(Cons(0, Cons(S(y''), xs))) -> ordered[Ite](True, Cons(0, Cons(S(y''), xs))) [1] ordered(Cons(x', Cons(0, xs))) -> ordered[Ite](False, Cons(x', Cons(0, xs))) [1] ordered(Cons(x', Cons(x, xs))) -> ordered[Ite](null_lt, Cons(x', Cons(x, xs))) [1] ordered(Cons(x, Nil)) -> True [1] ordered(Nil) -> True [1] notEmpty(Cons(x, xs)) -> True [1] notEmpty(Nil) -> False [1] goal(xs) -> ordered(xs) [1] lt(S(x), S(y)) -> lt(x, y) [0] lt(0, S(y)) -> True [0] lt(x, 0) -> False [0] ordered[Ite](True, Cons(x, xs)) -> ordered(xs) [0] ordered[Ite](False, xs) -> False [0] lt(v0, v1) -> null_lt [0] ordered[Ite](v0, v1) -> null_ordered[Ite] [0] The TRS has the following type information: ordered :: Cons:Nil -> True:False:null_lt:null_ordered[Ite] Cons :: S:0 -> Cons:Nil -> Cons:Nil ordered[Ite] :: True:False:null_lt:null_ordered[Ite] -> Cons:Nil -> True:False:null_lt:null_ordered[Ite] lt :: S:0 -> S:0 -> True:False:null_lt:null_ordered[Ite] Nil :: Cons:Nil True :: True:False:null_lt:null_ordered[Ite] notEmpty :: Cons:Nil -> True:False:null_lt:null_ordered[Ite] False :: True:False:null_lt:null_ordered[Ite] goal :: Cons:Nil -> True:False:null_lt:null_ordered[Ite] S :: S:0 -> S:0 0 :: S:0 null_lt :: True:False:null_lt:null_ordered[Ite] null_ordered[Ite] :: True:False:null_lt:null_ordered[Ite] Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 True => 2 False => 1 0 => 0 null_lt => 0 null_ordered[Ite] => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(xs) :|: xs >= 0, z = xs lt(z, z') -{ 0 }-> lt(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x lt(z, z') -{ 0 }-> 2 :|: z' = 1 + y, y >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: x >= 0, z = x, z' = 0 lt(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](lt(x'', y'), 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: x >= 0, z = 1 + x + 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: xs >= 0, z = 1, z' = xs ordered[Ite](z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> lt(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](lt(x'', y'), 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { lt } { notEmpty } { ordered[Ite], ordered } { goal } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> lt(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](lt(x'', y'), 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {lt}, {notEmpty}, {ordered[Ite],ordered}, {goal} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> lt(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](lt(x'', y'), 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {lt}, {notEmpty}, {ordered[Ite],ordered}, {goal} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: lt after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> lt(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](lt(x'', y'), 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {lt}, {notEmpty}, {ordered[Ite],ordered}, {goal} Previous analysis results are: lt: runtime: ?, size: O(1) [2] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: lt after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> lt(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](lt(x'', y'), 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {notEmpty}, {ordered[Ite],ordered}, {goal} Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](s, 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: s >= 0, s <= 2, xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {notEmpty}, {ordered[Ite],ordered}, {goal} Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: notEmpty after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](s, 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: s >= 0, s <= 2, xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {notEmpty}, {ordered[Ite],ordered}, {goal} Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] notEmpty: runtime: ?, size: O(1) [2] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: notEmpty after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](s, 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: s >= 0, s <= 2, xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {ordered[Ite],ordered}, {goal} Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] notEmpty: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](s, 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: s >= 0, s <= 2, xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {ordered[Ite],ordered}, {goal} Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] notEmpty: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: ordered[Ite] after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 Computed SIZE bound using CoFloCo for: ordered after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](s, 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: s >= 0, s <= 2, xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {ordered[Ite],ordered}, {goal} Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] notEmpty: runtime: O(1) [1], size: O(1) [2] ordered[Ite]: runtime: ?, size: O(1) [2] ordered: runtime: ?, size: O(1) [2] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: ordered[Ite] after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + z' Computed RUNTIME bound using CoFloCo for: ordered after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 1 }-> ordered(z) :|: z >= 0 lt(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 1 }-> ordered[Ite](s, 1 + (1 + x'') + (1 + (1 + y') + xs)) :|: s >= 0, s <= 2, xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](2, 1 + 0 + (1 + (1 + y'') + xs)) :|: xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 1 }-> ordered[Ite](1, 1 + x' + (1 + 0 + xs)) :|: xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 1 }-> ordered[Ite](0, 1 + x' + (1 + x + xs)) :|: xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 0 }-> ordered(xs) :|: z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {goal} Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] notEmpty: runtime: O(1) [1], size: O(1) [2] ordered[Ite]: runtime: O(n^1) [4 + z'], size: O(1) [2] ordered: runtime: O(n^1) [5 + z], size: O(1) [2] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 6 + z }-> s4 :|: s4 >= 0, s4 <= 2, z >= 0 lt(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 9 + x'' + xs + y' }-> s'' :|: s'' >= 0, s'' <= 2, s >= 0, s <= 2, xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 8 + xs + y'' }-> s1 :|: s1 >= 0, s1 <= 2, xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 7 + x' + xs }-> s2 :|: s2 >= 0, s2 <= 2, xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 7 + x + x' + xs }-> s3 :|: s3 >= 0, s3 <= 2, xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 5 + xs }-> s5 :|: s5 >= 0, s5 <= 2, z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {goal} Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] notEmpty: runtime: O(1) [1], size: O(1) [2] ordered[Ite]: runtime: O(n^1) [4 + z'], size: O(1) [2] ordered: runtime: O(n^1) [5 + z], size: O(1) [2] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: goal after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 6 + z }-> s4 :|: s4 >= 0, s4 <= 2, z >= 0 lt(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 9 + x'' + xs + y' }-> s'' :|: s'' >= 0, s'' <= 2, s >= 0, s <= 2, xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 8 + xs + y'' }-> s1 :|: s1 >= 0, s1 <= 2, xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 7 + x' + xs }-> s2 :|: s2 >= 0, s2 <= 2, xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 7 + x + x' + xs }-> s3 :|: s3 >= 0, s3 <= 2, xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 5 + xs }-> s5 :|: s5 >= 0, s5 <= 2, z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {goal} Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] notEmpty: runtime: O(1) [1], size: O(1) [2] ordered[Ite]: runtime: O(n^1) [4 + z'], size: O(1) [2] ordered: runtime: O(n^1) [5 + z], size: O(1) [2] goal: runtime: ?, size: O(1) [2] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: goal after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 6 + z ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: goal(z) -{ 6 + z }-> s4 :|: s4 >= 0, s4 <= 2, z >= 0 lt(z, z') -{ 0 }-> s' :|: s' >= 0, s' <= 2, z - 1 >= 0, z' - 1 >= 0 lt(z, z') -{ 0 }-> 2 :|: z' - 1 >= 0, z = 0 lt(z, z') -{ 0 }-> 1 :|: z >= 0, z' = 0 lt(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 ordered(z) -{ 9 + x'' + xs + y' }-> s'' :|: s'' >= 0, s'' <= 2, s >= 0, s <= 2, xs >= 0, z = 1 + (1 + x'') + (1 + (1 + y') + xs), y' >= 0, x'' >= 0 ordered(z) -{ 8 + xs + y'' }-> s1 :|: s1 >= 0, s1 <= 2, xs >= 0, z = 1 + 0 + (1 + (1 + y'') + xs), y'' >= 0 ordered(z) -{ 7 + x' + xs }-> s2 :|: s2 >= 0, s2 <= 2, xs >= 0, x' >= 0, z = 1 + x' + (1 + 0 + xs) ordered(z) -{ 7 + x + x' + xs }-> s3 :|: s3 >= 0, s3 <= 2, xs >= 0, x' >= 0, x >= 0, z = 1 + x' + (1 + x + xs) ordered(z) -{ 1 }-> 2 :|: z - 1 >= 0 ordered(z) -{ 1 }-> 2 :|: z = 0 ordered[Ite](z, z') -{ 5 + xs }-> s5 :|: s5 >= 0, s5 <= 2, z = 2, xs >= 0, z' = 1 + x + xs, x >= 0 ordered[Ite](z, z') -{ 0 }-> 1 :|: z' >= 0, z = 1 ordered[Ite](z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: lt: runtime: O(1) [0], size: O(1) [2] notEmpty: runtime: O(1) [1], size: O(1) [2] ordered[Ite]: runtime: O(n^1) [4 + z'], size: O(1) [2] ordered: runtime: O(n^1) [5 + z], size: O(1) [2] goal: runtime: O(n^1) [6 + z], size: O(1) [2] ---------------------------------------- (43) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (44) BOUNDS(1, n^1)