/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 178 ms] (2) CpxRelTRS (3) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 283 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 53 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 32 ms] (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (3) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Innermost TRS: Rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: remove :: S:0' -> Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False Nil :: Cons:Nil minsort :: Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: remove, !EQ, minsort, appmin, < They will be analysed ascendingly in the following order: !EQ < remove remove < appmin minsort = appmin < < appmin ---------------------------------------- (8) Obligation: Innermost TRS: Rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: remove :: S:0' -> Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False Nil :: Cons:Nil minsort :: Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: !EQ, remove, minsort, appmin, < They will be analysed ascendingly in the following order: !EQ < remove remove < appmin minsort = appmin < < appmin ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) Induction Base: !EQ(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) False Induction Step: !EQ(gen_S:0'5_0(+(n7_0, 1)), gen_S:0'5_0(+(1, +(n7_0, 1)))) ->_R^Omega(0) !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) ->_IH False We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (10) Obligation: Innermost TRS: Rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: remove :: S:0' -> Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False Nil :: Cons:Nil minsort :: Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: remove, minsort, appmin, < They will be analysed ascendingly in the following order: remove < appmin minsort = appmin < < appmin ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(n316_0)) -> gen_Cons:Nil4_0(n316_0), rt in Omega(1 + n316_0) Induction Base: remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(0)) ->_R^Omega(1) Nil Induction Step: remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(n316_0, 1))) ->_R^Omega(1) remove[Ite][True][Ite](!EQ(gen_S:0'5_0(1), 0'), gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(n316_0))) ->_R^Omega(0) remove[Ite][True][Ite](False, gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(n316_0))) ->_R^Omega(0) Cons(0', remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(n316_0))) ->_IH Cons(0', gen_Cons:Nil4_0(c317_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: remove :: S:0' -> Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False Nil :: Cons:Nil minsort :: Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: remove, minsort, appmin, < They will be analysed ascendingly in the following order: remove < appmin minsort = appmin < < appmin ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: remove :: S:0' -> Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False Nil :: Cons:Nil minsort :: Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(n316_0)) -> gen_Cons:Nil4_0(n316_0), rt in Omega(1 + n316_0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: <, minsort, appmin They will be analysed ascendingly in the following order: minsort = appmin < < appmin ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: <(gen_S:0'5_0(n819_0), gen_S:0'5_0(+(1, n819_0))) -> True, rt in Omega(0) Induction Base: <(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) True Induction Step: <(gen_S:0'5_0(+(n819_0, 1)), gen_S:0'5_0(+(1, +(n819_0, 1)))) ->_R^Omega(0) <(gen_S:0'5_0(n819_0), gen_S:0'5_0(+(1, n819_0))) ->_IH True We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: remove :: S:0' -> Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False Nil :: Cons:Nil minsort :: Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(n316_0)) -> gen_Cons:Nil4_0(n316_0), rt in Omega(1 + n316_0) <(gen_S:0'5_0(n819_0), gen_S:0'5_0(+(1, n819_0))) -> True, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: appmin, minsort They will be analysed ascendingly in the following order: minsort = appmin