/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 10 ms] (8) CdtProblem (9) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (10) BOUNDS(1, 1) (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (12) TRS for Loop Detection (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: duplicate(Cons(x, xs)) -> Cons(x, Cons(x, duplicate(xs))) duplicate(Nil) -> Nil goal(x) -> duplicate(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: duplicate(Cons(z0, z1)) -> Cons(z0, Cons(z0, duplicate(z1))) duplicate(Nil) -> Nil goal(z0) -> duplicate(z0) Tuples: DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) DUPLICATE(Nil) -> c1 GOAL(z0) -> c2(DUPLICATE(z0)) S tuples: DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) DUPLICATE(Nil) -> c1 GOAL(z0) -> c2(DUPLICATE(z0)) K tuples:none Defined Rule Symbols: duplicate_1, goal_1 Defined Pair Symbols: DUPLICATE_1, GOAL_1 Compound Symbols: c_1, c1, c2_1 ---------------------------------------- (3) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: GOAL(z0) -> c2(DUPLICATE(z0)) Removed 1 trailing nodes: DUPLICATE(Nil) -> c1 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: duplicate(Cons(z0, z1)) -> Cons(z0, Cons(z0, duplicate(z1))) duplicate(Nil) -> Nil goal(z0) -> duplicate(z0) Tuples: DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) S tuples: DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) K tuples:none Defined Rule Symbols: duplicate_1, goal_1 Defined Pair Symbols: DUPLICATE_1 Compound Symbols: c_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: duplicate(Cons(z0, z1)) -> Cons(z0, Cons(z0, duplicate(z1))) duplicate(Nil) -> Nil goal(z0) -> duplicate(z0) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) S tuples: DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: DUPLICATE_1 Compound Symbols: c_1 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) We considered the (Usable) Rules:none And the Tuples: DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(Cons(x_1, x_2)) = [1] + x_2 POL(DUPLICATE(x_1)) = x_1 POL(c(x_1)) = x_1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) S tuples:none K tuples: DUPLICATE(Cons(z0, z1)) -> c(DUPLICATE(z1)) Defined Rule Symbols:none Defined Pair Symbols: DUPLICATE_1 Compound Symbols: c_1 ---------------------------------------- (9) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (10) BOUNDS(1, 1) ---------------------------------------- (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: duplicate(Cons(x, xs)) -> Cons(x, Cons(x, duplicate(xs))) duplicate(Nil) -> Nil goal(x) -> duplicate(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence duplicate(Cons(x, xs)) ->^+ Cons(x, Cons(x, duplicate(xs))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1]. The pumping substitution is [xs / Cons(x, xs)]. The result substitution is [ ]. ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: duplicate(Cons(x, xs)) -> Cons(x, Cons(x, duplicate(xs))) duplicate(Nil) -> Nil goal(x) -> duplicate(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: duplicate(Cons(x, xs)) -> Cons(x, Cons(x, duplicate(xs))) duplicate(Nil) -> Nil goal(x) -> duplicate(x) S is empty. Rewrite Strategy: INNERMOST