/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^3), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 308 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 89 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^3, INF) (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 544 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: power(x', Cons(x, xs)) -> mult(x', power(x', xs)) mult(x', Cons(x, xs)) -> add0(x', mult(x', xs)) add0(x', Cons(x, xs)) -> Cons(Cons(Nil, Nil), add0(x', xs)) power(x, Nil) -> Cons(Nil, Nil) mult(x, Nil) -> Nil add0(x, Nil) -> x goal(x, y) -> power(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: power(x', Cons(x, xs)) -> mult(x', power(x', xs)) mult(x', Cons(x, xs)) -> add0(x', mult(x', xs)) add0(x', Cons(x, xs)) -> Cons(Cons(Nil, Nil), add0(x', xs)) power(x, Nil) -> Cons(Nil, Nil) mult(x, Nil) -> Nil add0(x, Nil) -> x goal(x, y) -> power(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: Cons/0 ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: power(x', Cons(xs)) -> mult(x', power(x', xs)) mult(x', Cons(xs)) -> add0(x', mult(x', xs)) add0(x', Cons(xs)) -> Cons(add0(x', xs)) power(x, Nil) -> Cons(Nil) mult(x, Nil) -> Nil add0(x, Nil) -> x goal(x, y) -> power(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Innermost TRS: Rules: power(x', Cons(xs)) -> mult(x', power(x', xs)) mult(x', Cons(xs)) -> add0(x', mult(x', xs)) add0(x', Cons(xs)) -> Cons(add0(x', xs)) power(x, Nil) -> Cons(Nil) mult(x, Nil) -> Nil add0(x, Nil) -> x goal(x, y) -> power(x, y) Types: power :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil mult :: Cons:Nil -> Cons:Nil -> Cons:Nil add0 :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil hole_Cons:Nil1_1 :: Cons:Nil gen_Cons:Nil2_1 :: Nat -> Cons:Nil ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: power, mult, add0 They will be analysed ascendingly in the following order: mult < power add0 < mult ---------------------------------------- (8) Obligation: Innermost TRS: Rules: power(x', Cons(xs)) -> mult(x', power(x', xs)) mult(x', Cons(xs)) -> add0(x', mult(x', xs)) add0(x', Cons(xs)) -> Cons(add0(x', xs)) power(x, Nil) -> Cons(Nil) mult(x, Nil) -> Nil add0(x, Nil) -> x goal(x, y) -> power(x, y) Types: power :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil mult :: Cons:Nil -> Cons:Nil -> Cons:Nil add0 :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil hole_Cons:Nil1_1 :: Cons:Nil gen_Cons:Nil2_1 :: Nat -> Cons:Nil Generator Equations: gen_Cons:Nil2_1(0) <=> Nil gen_Cons:Nil2_1(+(x, 1)) <=> Cons(gen_Cons:Nil2_1(x)) The following defined symbols remain to be analysed: add0, power, mult They will be analysed ascendingly in the following order: mult < power add0 < mult ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) -> gen_Cons:Nil2_1(+(n4_1, a)), rt in Omega(1 + n4_1) Induction Base: add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(0)) ->_R^Omega(1) gen_Cons:Nil2_1(a) Induction Step: add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(n4_1, 1))) ->_R^Omega(1) Cons(add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1))) ->_IH Cons(gen_Cons:Nil2_1(+(a, c5_1))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: power(x', Cons(xs)) -> mult(x', power(x', xs)) mult(x', Cons(xs)) -> add0(x', mult(x', xs)) add0(x', Cons(xs)) -> Cons(add0(x', xs)) power(x, Nil) -> Cons(Nil) mult(x, Nil) -> Nil add0(x, Nil) -> x goal(x, y) -> power(x, y) Types: power :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil mult :: Cons:Nil -> Cons:Nil -> Cons:Nil add0 :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil hole_Cons:Nil1_1 :: Cons:Nil gen_Cons:Nil2_1 :: Nat -> Cons:Nil Generator Equations: gen_Cons:Nil2_1(0) <=> Nil gen_Cons:Nil2_1(+(x, 1)) <=> Cons(gen_Cons:Nil2_1(x)) The following defined symbols remain to be analysed: add0, power, mult They will be analysed ascendingly in the following order: mult < power add0 < mult ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Innermost TRS: Rules: power(x', Cons(xs)) -> mult(x', power(x', xs)) mult(x', Cons(xs)) -> add0(x', mult(x', xs)) add0(x', Cons(xs)) -> Cons(add0(x', xs)) power(x, Nil) -> Cons(Nil) mult(x, Nil) -> Nil add0(x, Nil) -> x goal(x, y) -> power(x, y) Types: power :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil mult :: Cons:Nil -> Cons:Nil -> Cons:Nil add0 :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil hole_Cons:Nil1_1 :: Cons:Nil gen_Cons:Nil2_1 :: Nat -> Cons:Nil Lemmas: add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) -> gen_Cons:Nil2_1(+(n4_1, a)), rt in Omega(1 + n4_1) Generator Equations: gen_Cons:Nil2_1(0) <=> Nil gen_Cons:Nil2_1(+(x, 1)) <=> Cons(gen_Cons:Nil2_1(x)) The following defined symbols remain to be analysed: mult, power They will be analysed ascendingly in the following order: mult < power ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n504_1)) -> gen_Cons:Nil2_1(*(n504_1, a)), rt in Omega(1 + a*n504_1^2 + n504_1) Induction Base: mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(0)) ->_R^Omega(1) Nil Induction Step: mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(n504_1, 1))) ->_R^Omega(1) add0(gen_Cons:Nil2_1(a), mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n504_1))) ->_IH add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(*(c505_1, a))) ->_L^Omega(1 + a*n504_1) gen_Cons:Nil2_1(+(*(n504_1, a), a)) We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^3 for the following obligation: Innermost TRS: Rules: power(x', Cons(xs)) -> mult(x', power(x', xs)) mult(x', Cons(xs)) -> add0(x', mult(x', xs)) add0(x', Cons(xs)) -> Cons(add0(x', xs)) power(x, Nil) -> Cons(Nil) mult(x, Nil) -> Nil add0(x, Nil) -> x goal(x, y) -> power(x, y) Types: power :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil mult :: Cons:Nil -> Cons:Nil -> Cons:Nil add0 :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil hole_Cons:Nil1_1 :: Cons:Nil gen_Cons:Nil2_1 :: Nat -> Cons:Nil Lemmas: add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) -> gen_Cons:Nil2_1(+(n4_1, a)), rt in Omega(1 + n4_1) Generator Equations: gen_Cons:Nil2_1(0) <=> Nil gen_Cons:Nil2_1(+(x, 1)) <=> Cons(gen_Cons:Nil2_1(x)) The following defined symbols remain to be analysed: mult, power They will be analysed ascendingly in the following order: mult < power ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^3, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: power(x', Cons(xs)) -> mult(x', power(x', xs)) mult(x', Cons(xs)) -> add0(x', mult(x', xs)) add0(x', Cons(xs)) -> Cons(add0(x', xs)) power(x, Nil) -> Cons(Nil) mult(x, Nil) -> Nil add0(x, Nil) -> x goal(x, y) -> power(x, y) Types: power :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil mult :: Cons:Nil -> Cons:Nil -> Cons:Nil add0 :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil hole_Cons:Nil1_1 :: Cons:Nil gen_Cons:Nil2_1 :: Nat -> Cons:Nil Lemmas: add0(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n4_1)) -> gen_Cons:Nil2_1(+(n4_1, a)), rt in Omega(1 + n4_1) mult(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(n504_1)) -> gen_Cons:Nil2_1(*(n504_1, a)), rt in Omega(1 + a*n504_1^2 + n504_1) Generator Equations: gen_Cons:Nil2_1(0) <=> Nil gen_Cons:Nil2_1(+(x, 1)) <=> Cons(gen_Cons:Nil2_1(x)) The following defined symbols remain to be analysed: power ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, n1128_1))) -> *3_1, rt in Omega(n1128_1) Induction Base: power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, 0))) Induction Step: power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, +(n1128_1, 1)))) ->_R^Omega(1) mult(gen_Cons:Nil2_1(a), power(gen_Cons:Nil2_1(a), gen_Cons:Nil2_1(+(1, n1128_1)))) ->_IH mult(gen_Cons:Nil2_1(a), *3_1) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) BOUNDS(1, INF)