/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 347 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 4 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: subst(x, a, App(e1, e2)) -> mkapp(subst(x, a, e1), subst(x, a, e2)) subst(x, a, Lam(var, exp)) -> subst[True][Ite](eqTerm(x, V(var)), x, a, Lam(var, exp)) red(App(e1, e2)) -> red[Let](App(e1, e2), red(e1)) red(Lam(int, term)) -> Lam(int, term) subst(x, a, V(int)) -> subst[Ite](eqTerm(x, V(int)), x, a, V(int)) red(V(int)) -> V(int) eqTerm(App(t11, t12), App(t21, t22)) -> and(eqTerm(t11, t21), eqTerm(t12, t22)) eqTerm(App(t11, t12), Lam(i2, l2)) -> False eqTerm(App(t11, t12), V(v2)) -> False eqTerm(Lam(i1, l1), App(t21, t22)) -> False eqTerm(Lam(i1, l1), Lam(i2, l2)) -> and(!EQ(i1, i2), eqTerm(l1, l2)) eqTerm(Lam(i1, l1), V(v2)) -> False eqTerm(V(v1), App(t21, t22)) -> False eqTerm(V(v1), Lam(i2, l2)) -> False eqTerm(V(v1), V(v2)) -> !EQ(v1, v2) mklam(V(name), e) -> Lam(name, e) lamvar(Lam(var, exp)) -> V(var) lambody(Lam(var, exp)) -> exp isvar(App(t1, t2)) -> False isvar(Lam(int, term)) -> False isvar(V(int)) -> True islam(App(t1, t2)) -> False islam(Lam(int, term)) -> True islam(V(int)) -> False appe2(App(e1, e2)) -> e2 appe1(App(e1, e2)) -> e1 mkapp(e1, e2) -> App(e1, e2) lambdaint(e) -> red(e) The (relative) TRS S consists of the following rules: and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True red[Let][Let](e, Lam(var, exp), a) -> red(subst(V(var), a, exp)) subst[True][Ite](False, x, a, Lam(var, exp)) -> mklam(V(var), subst(x, a, exp)) red[Let][Let](e, App(t1, t2), e2) -> App(App(t1, t2), e2) red[Let][Let](e, V(int), e2) -> App(V(int), e2) red[Let](App(e1, e2), f) -> red[Let][Let](App(e1, e2), f, red(e2)) subst[True][Ite](True, x, a, e) -> e subst[Ite](False, x, a, e) -> e subst[Ite](True, x, a, e) -> a Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: subst(x, a, App(e1, e2)) -> mkapp(subst(x, a, e1), subst(x, a, e2)) subst(x, a, Lam(var, exp)) -> subst[True][Ite](eqTerm(x, V(var)), x, a, Lam(var, exp)) red(App(e1, e2)) -> red[Let](App(e1, e2), red(e1)) red(Lam(int, term)) -> Lam(int, term) subst(x, a, V(int)) -> subst[Ite](eqTerm(x, V(int)), x, a, V(int)) red(V(int)) -> V(int) eqTerm(App(t11, t12), App(t21, t22)) -> and(eqTerm(t11, t21), eqTerm(t12, t22)) eqTerm(App(t11, t12), Lam(i2, l2)) -> False eqTerm(App(t11, t12), V(v2)) -> False eqTerm(Lam(i1, l1), App(t21, t22)) -> False eqTerm(Lam(i1, l1), Lam(i2, l2)) -> and(!EQ(i1, i2), eqTerm(l1, l2)) eqTerm(Lam(i1, l1), V(v2)) -> False eqTerm(V(v1), App(t21, t22)) -> False eqTerm(V(v1), Lam(i2, l2)) -> False eqTerm(V(v1), V(v2)) -> !EQ(v1, v2) mklam(V(name), e) -> Lam(name, e) lamvar(Lam(var, exp)) -> V(var) lambody(Lam(var, exp)) -> exp isvar(App(t1, t2)) -> False isvar(Lam(int, term)) -> False isvar(V(int)) -> True islam(App(t1, t2)) -> False islam(Lam(int, term)) -> True islam(V(int)) -> False appe2(App(e1, e2)) -> e2 appe1(App(e1, e2)) -> e1 mkapp(e1, e2) -> App(e1, e2) lambdaint(e) -> red(e) The (relative) TRS S consists of the following rules: and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True red[Let][Let](e, Lam(var, exp), a) -> red(subst(V(var), a, exp)) subst[True][Ite](False, x, a, Lam(var, exp)) -> mklam(V(var), subst(x, a, exp)) red[Let][Let](e, App(t1, t2), e2) -> App(App(t1, t2), e2) red[Let][Let](e, V(int), e2) -> App(V(int), e2) red[Let](App(e1, e2), f) -> red[Let][Let](App(e1, e2), f, red(e2)) subst[True][Ite](True, x, a, e) -> e subst[Ite](False, x, a, e) -> e subst[Ite](True, x, a, e) -> a Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: subst(x, a, App(e1, e2)) -> mkapp(subst(x, a, e1), subst(x, a, e2)) subst(x, a, Lam(var, exp)) -> subst[True][Ite](eqTerm(x, V(var)), x, a, Lam(var, exp)) red(App(e1, e2)) -> red[Let](App(e1, e2), red(e1)) red(Lam(int, term)) -> Lam(int, term) subst(x, a, V(int)) -> subst[Ite](eqTerm(x, V(int)), x, a, V(int)) red(V(int)) -> V(int) eqTerm(App(t11, t12), App(t21, t22)) -> and(eqTerm(t11, t21), eqTerm(t12, t22)) eqTerm(App(t11, t12), Lam(i2, l2)) -> False eqTerm(App(t11, t12), V(v2)) -> False eqTerm(Lam(i1, l1), App(t21, t22)) -> False eqTerm(Lam(i1, l1), Lam(i2, l2)) -> and(!EQ(i1, i2), eqTerm(l1, l2)) eqTerm(Lam(i1, l1), V(v2)) -> False eqTerm(V(v1), App(t21, t22)) -> False eqTerm(V(v1), Lam(i2, l2)) -> False eqTerm(V(v1), V(v2)) -> !EQ(v1, v2) mklam(V(name), e) -> Lam(name, e) lamvar(Lam(var, exp)) -> V(var) lambody(Lam(var, exp)) -> exp isvar(App(t1, t2)) -> False isvar(Lam(int, term)) -> False isvar(V(int)) -> True islam(App(t1, t2)) -> False islam(Lam(int, term)) -> True islam(V(int)) -> False appe2(App(e1, e2)) -> e2 appe1(App(e1, e2)) -> e1 mkapp(e1, e2) -> App(e1, e2) lambdaint(e) -> red(e) The (relative) TRS S consists of the following rules: and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True red[Let][Let](e, Lam(var, exp), a) -> red(subst(V(var), a, exp)) subst[True][Ite](False, x, a, Lam(var, exp)) -> mklam(V(var), subst(x, a, exp)) red[Let][Let](e, App(t1, t2), e2) -> App(App(t1, t2), e2) red[Let][Let](e, V(int), e2) -> App(V(int), e2) red[Let](App(e1, e2), f) -> red[Let][Let](App(e1, e2), f, red(e2)) subst[True][Ite](True, x, a, e) -> e subst[Ite](False, x, a, e) -> e subst[Ite](True, x, a, e) -> a Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence eqTerm(App(t11, t12), App(t21, t22)) ->^+ and(eqTerm(t11, t21), eqTerm(t12, t22)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [t11 / App(t11, t12), t21 / App(t21, t22)]. The result substitution is [ ]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: subst(x, a, App(e1, e2)) -> mkapp(subst(x, a, e1), subst(x, a, e2)) subst(x, a, Lam(var, exp)) -> subst[True][Ite](eqTerm(x, V(var)), x, a, Lam(var, exp)) red(App(e1, e2)) -> red[Let](App(e1, e2), red(e1)) red(Lam(int, term)) -> Lam(int, term) subst(x, a, V(int)) -> subst[Ite](eqTerm(x, V(int)), x, a, V(int)) red(V(int)) -> V(int) eqTerm(App(t11, t12), App(t21, t22)) -> and(eqTerm(t11, t21), eqTerm(t12, t22)) eqTerm(App(t11, t12), Lam(i2, l2)) -> False eqTerm(App(t11, t12), V(v2)) -> False eqTerm(Lam(i1, l1), App(t21, t22)) -> False eqTerm(Lam(i1, l1), Lam(i2, l2)) -> and(!EQ(i1, i2), eqTerm(l1, l2)) eqTerm(Lam(i1, l1), V(v2)) -> False eqTerm(V(v1), App(t21, t22)) -> False eqTerm(V(v1), Lam(i2, l2)) -> False eqTerm(V(v1), V(v2)) -> !EQ(v1, v2) mklam(V(name), e) -> Lam(name, e) lamvar(Lam(var, exp)) -> V(var) lambody(Lam(var, exp)) -> exp isvar(App(t1, t2)) -> False isvar(Lam(int, term)) -> False isvar(V(int)) -> True islam(App(t1, t2)) -> False islam(Lam(int, term)) -> True islam(V(int)) -> False appe2(App(e1, e2)) -> e2 appe1(App(e1, e2)) -> e1 mkapp(e1, e2) -> App(e1, e2) lambdaint(e) -> red(e) The (relative) TRS S consists of the following rules: and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True red[Let][Let](e, Lam(var, exp), a) -> red(subst(V(var), a, exp)) subst[True][Ite](False, x, a, Lam(var, exp)) -> mklam(V(var), subst(x, a, exp)) red[Let][Let](e, App(t1, t2), e2) -> App(App(t1, t2), e2) red[Let][Let](e, V(int), e2) -> App(V(int), e2) red[Let](App(e1, e2), f) -> red[Let][Let](App(e1, e2), f, red(e2)) subst[True][Ite](True, x, a, e) -> e subst[Ite](False, x, a, e) -> e subst[Ite](True, x, a, e) -> a Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: subst(x, a, App(e1, e2)) -> mkapp(subst(x, a, e1), subst(x, a, e2)) subst(x, a, Lam(var, exp)) -> subst[True][Ite](eqTerm(x, V(var)), x, a, Lam(var, exp)) red(App(e1, e2)) -> red[Let](App(e1, e2), red(e1)) red(Lam(int, term)) -> Lam(int, term) subst(x, a, V(int)) -> subst[Ite](eqTerm(x, V(int)), x, a, V(int)) red(V(int)) -> V(int) eqTerm(App(t11, t12), App(t21, t22)) -> and(eqTerm(t11, t21), eqTerm(t12, t22)) eqTerm(App(t11, t12), Lam(i2, l2)) -> False eqTerm(App(t11, t12), V(v2)) -> False eqTerm(Lam(i1, l1), App(t21, t22)) -> False eqTerm(Lam(i1, l1), Lam(i2, l2)) -> and(!EQ(i1, i2), eqTerm(l1, l2)) eqTerm(Lam(i1, l1), V(v2)) -> False eqTerm(V(v1), App(t21, t22)) -> False eqTerm(V(v1), Lam(i2, l2)) -> False eqTerm(V(v1), V(v2)) -> !EQ(v1, v2) mklam(V(name), e) -> Lam(name, e) lamvar(Lam(var, exp)) -> V(var) lambody(Lam(var, exp)) -> exp isvar(App(t1, t2)) -> False isvar(Lam(int, term)) -> False isvar(V(int)) -> True islam(App(t1, t2)) -> False islam(Lam(int, term)) -> True islam(V(int)) -> False appe2(App(e1, e2)) -> e2 appe1(App(e1, e2)) -> e1 mkapp(e1, e2) -> App(e1, e2) lambdaint(e) -> red(e) The (relative) TRS S consists of the following rules: and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True red[Let][Let](e, Lam(var, exp), a) -> red(subst(V(var), a, exp)) subst[True][Ite](False, x, a, Lam(var, exp)) -> mklam(V(var), subst(x, a, exp)) red[Let][Let](e, App(t1, t2), e2) -> App(App(t1, t2), e2) red[Let][Let](e, V(int), e2) -> App(V(int), e2) red[Let](App(e1, e2), f) -> red[Let][Let](App(e1, e2), f, red(e2)) subst[True][Ite](True, x, a, e) -> e subst[Ite](False, x, a, e) -> e subst[Ite](True, x, a, e) -> a Rewrite Strategy: INNERMOST