/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 151 ms] (2) CpxRelTRS (3) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) SlicingProof [LOWER BOUND(ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 1436 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 44 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: subsets(Cons(x, xs)) -> subsets[Ite][True][Let](Cons(x, xs), subsets(xs)) subsets(Nil) -> Cons(Nil, Nil) mapconsapp(x', Cons(x, xs), rest) -> Cons(Cons(x', x), mapconsapp(x', xs, rest)) mapconsapp(x, Nil, rest) -> rest notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> subsets(xs) The (relative) TRS S consists of the following rules: subsets[Ite][True][Let](Cons(x, xs), subs) -> mapconsapp(x, subs, subs) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: subsets(Cons(x, xs)) -> subsets[Ite][True][Let](Cons(x, xs), subsets(xs)) subsets(Nil) -> Cons(Nil, Nil) mapconsapp(x', Cons(x, xs), rest) -> Cons(Cons(x', x), mapconsapp(x', xs, rest)) mapconsapp(x, Nil, rest) -> rest notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> subsets(xs) The (relative) TRS S consists of the following rules: subsets[Ite][True][Let](Cons(x, xs), subs) -> mapconsapp(x, subs, subs) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: subsets(Cons(x, xs)) -> subsets[Ite][True][Let](Cons(x, xs), subsets(xs)) subsets(Nil) -> Cons(Nil, Nil) mapconsapp(x', Cons(x, xs), rest) -> Cons(Cons(x', x), mapconsapp(x', xs, rest)) mapconsapp(x, Nil, rest) -> rest notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> subsets(xs) The (relative) TRS S consists of the following rules: subsets[Ite][True][Let](Cons(x, xs), subs) -> mapconsapp(x, subs, subs) Rewrite Strategy: INNERMOST ---------------------------------------- (5) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: Cons/0 mapconsapp/0 ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: subsets(Cons(xs)) -> subsets[Ite][True][Let](Cons(xs), subsets(xs)) subsets(Nil) -> Cons(Nil) mapconsapp(Cons(xs), rest) -> Cons(mapconsapp(xs, rest)) mapconsapp(Nil, rest) -> rest notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False goal(xs) -> subsets(xs) The (relative) TRS S consists of the following rules: subsets[Ite][True][Let](Cons(xs), subs) -> mapconsapp(subs, subs) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: subsets(Cons(xs)) -> subsets[Ite][True][Let](Cons(xs), subsets(xs)) subsets(Nil) -> Cons(Nil) mapconsapp(Cons(xs), rest) -> Cons(mapconsapp(xs, rest)) mapconsapp(Nil, rest) -> rest notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False goal(xs) -> subsets(xs) subsets[Ite][True][Let](Cons(xs), subs) -> mapconsapp(subs, subs) Types: subsets :: Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil subsets[Ite][True][Let] :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil mapconsapp :: Cons:Nil -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil hole_Cons:Nil1_0 :: Cons:Nil hole_True:False2_0 :: True:False gen_Cons:Nil3_0 :: Nat -> Cons:Nil ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: subsets, mapconsapp ---------------------------------------- (10) Obligation: Innermost TRS: Rules: subsets(Cons(xs)) -> subsets[Ite][True][Let](Cons(xs), subsets(xs)) subsets(Nil) -> Cons(Nil) mapconsapp(Cons(xs), rest) -> Cons(mapconsapp(xs, rest)) mapconsapp(Nil, rest) -> rest notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False goal(xs) -> subsets(xs) subsets[Ite][True][Let](Cons(xs), subs) -> mapconsapp(subs, subs) Types: subsets :: Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil subsets[Ite][True][Let] :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil mapconsapp :: Cons:Nil -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil hole_Cons:Nil1_0 :: Cons:Nil hole_True:False2_0 :: True:False gen_Cons:Nil3_0 :: Nat -> Cons:Nil Generator Equations: gen_Cons:Nil3_0(0) <=> Nil gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) The following defined symbols remain to be analysed: subsets, mapconsapp ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: subsets(gen_Cons:Nil3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: subsets(gen_Cons:Nil3_0(+(1, 0))) Induction Step: subsets(gen_Cons:Nil3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) subsets[Ite][True][Let](Cons(gen_Cons:Nil3_0(+(1, n5_0))), subsets(gen_Cons:Nil3_0(+(1, n5_0)))) ->_IH subsets[Ite][True][Let](Cons(gen_Cons:Nil3_0(+(1, n5_0))), *4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: subsets(Cons(xs)) -> subsets[Ite][True][Let](Cons(xs), subsets(xs)) subsets(Nil) -> Cons(Nil) mapconsapp(Cons(xs), rest) -> Cons(mapconsapp(xs, rest)) mapconsapp(Nil, rest) -> rest notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False goal(xs) -> subsets(xs) subsets[Ite][True][Let](Cons(xs), subs) -> mapconsapp(subs, subs) Types: subsets :: Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil subsets[Ite][True][Let] :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil mapconsapp :: Cons:Nil -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil hole_Cons:Nil1_0 :: Cons:Nil hole_True:False2_0 :: True:False gen_Cons:Nil3_0 :: Nat -> Cons:Nil Generator Equations: gen_Cons:Nil3_0(0) <=> Nil gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) The following defined symbols remain to be analysed: subsets, mapconsapp ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: subsets(Cons(xs)) -> subsets[Ite][True][Let](Cons(xs), subsets(xs)) subsets(Nil) -> Cons(Nil) mapconsapp(Cons(xs), rest) -> Cons(mapconsapp(xs, rest)) mapconsapp(Nil, rest) -> rest notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False goal(xs) -> subsets(xs) subsets[Ite][True][Let](Cons(xs), subs) -> mapconsapp(subs, subs) Types: subsets :: Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil subsets[Ite][True][Let] :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil mapconsapp :: Cons:Nil -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil hole_Cons:Nil1_0 :: Cons:Nil hole_True:False2_0 :: True:False gen_Cons:Nil3_0 :: Nat -> Cons:Nil Lemmas: subsets(gen_Cons:Nil3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_Cons:Nil3_0(0) <=> Nil gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) The following defined symbols remain to be analysed: mapconsapp ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mapconsapp(gen_Cons:Nil3_0(n3634_0), gen_Cons:Nil3_0(b)) -> gen_Cons:Nil3_0(+(n3634_0, b)), rt in Omega(1 + n3634_0) Induction Base: mapconsapp(gen_Cons:Nil3_0(0), gen_Cons:Nil3_0(b)) ->_R^Omega(1) gen_Cons:Nil3_0(b) Induction Step: mapconsapp(gen_Cons:Nil3_0(+(n3634_0, 1)), gen_Cons:Nil3_0(b)) ->_R^Omega(1) Cons(mapconsapp(gen_Cons:Nil3_0(n3634_0), gen_Cons:Nil3_0(b))) ->_IH Cons(gen_Cons:Nil3_0(+(b, c3635_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) BOUNDS(1, INF)