/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^3), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 280 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 41 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 37 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^3, INF) (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 534 ms] (26) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0) -> s(0) exp(x, s(y)) -> times(x, exp(x, y)) p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0)) towerIter(0, y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s exp :: 0':s -> 0':s -> 0':s tower :: 0':s -> 0':s -> 0':s towerIter :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, p, times, exp, towerIter They will be analysed ascendingly in the following order: p < plus plus < times p < times p < towerIter times < exp exp < towerIter ---------------------------------------- (6) Obligation: Innermost TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s exp :: 0':s -> 0':s -> 0':s tower :: 0':s -> 0':s -> 0':s towerIter :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: p, plus, times, exp, towerIter They will be analysed ascendingly in the following order: p < plus plus < times p < times p < towerIter times < exp exp < towerIter ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) Induction Base: p(gen_0':s2_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: p(gen_0':s2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) s(p(s(gen_0':s2_0(n4_0)))) ->_IH s(gen_0':s2_0(c5_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s exp :: 0':s -> 0':s -> 0':s tower :: 0':s -> 0':s -> 0':s towerIter :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: p, plus, times, exp, towerIter They will be analysed ascendingly in the following order: p < plus plus < times p < times p < towerIter times < exp exp < towerIter ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s exp :: 0':s -> 0':s -> 0':s tower :: 0':s -> 0':s -> 0':s towerIter :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, exp, towerIter They will be analysed ascendingly in the following order: plus < times times < exp exp < towerIter ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s2_0(n245_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n245_0, b)), rt in Omega(1 + n245_0 + n245_0^2) Induction Base: plus(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) gen_0':s2_0(b) Induction Step: plus(gen_0':s2_0(+(n245_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) s(plus(p(s(gen_0':s2_0(n245_0))), gen_0':s2_0(b))) ->_L^Omega(1 + n245_0) s(plus(gen_0':s2_0(n245_0), gen_0':s2_0(b))) ->_IH s(gen_0':s2_0(+(b, c246_0))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: Innermost TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s exp :: 0':s -> 0':s -> 0':s tower :: 0':s -> 0':s -> 0':s towerIter :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, exp, towerIter They will be analysed ascendingly in the following order: plus < times times < exp exp < towerIter ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s exp :: 0':s -> 0':s -> 0':s tower :: 0':s -> 0':s -> 0':s towerIter :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) plus(gen_0':s2_0(n245_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n245_0, b)), rt in Omega(1 + n245_0 + n245_0^2) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, exp, towerIter They will be analysed ascendingly in the following order: times < exp exp < towerIter ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s2_0(n767_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n767_0, b)), rt in Omega(1 + b*n767_0 + b^2*n767_0 + n767_0 + n767_0^2) Induction Base: times(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s2_0(+(n767_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) plus(gen_0':s2_0(b), times(p(s(gen_0':s2_0(n767_0))), gen_0':s2_0(b))) ->_L^Omega(1 + n767_0) plus(gen_0':s2_0(b), times(gen_0':s2_0(n767_0), gen_0':s2_0(b))) ->_IH plus(gen_0':s2_0(b), gen_0':s2_0(*(c768_0, b))) ->_L^Omega(1 + b + b^2) gen_0':s2_0(+(b, *(n767_0, b))) We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^3 for the following obligation: Innermost TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s exp :: 0':s -> 0':s -> 0':s tower :: 0':s -> 0':s -> 0':s towerIter :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) plus(gen_0':s2_0(n245_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n245_0, b)), rt in Omega(1 + n245_0 + n245_0^2) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, exp, towerIter They will be analysed ascendingly in the following order: times < exp exp < towerIter ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^3, INF) ---------------------------------------- (24) Obligation: Innermost TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s exp :: 0':s -> 0':s -> 0':s tower :: 0':s -> 0':s -> 0':s towerIter :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) plus(gen_0':s2_0(n245_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n245_0, b)), rt in Omega(1 + n245_0 + n245_0^2) times(gen_0':s2_0(n767_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n767_0, b)), rt in Omega(1 + b*n767_0 + b^2*n767_0 + n767_0 + n767_0^2) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: exp, towerIter They will be analysed ascendingly in the following order: exp < towerIter ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: exp(gen_0':s2_0(a), gen_0':s2_0(+(1, n1497_0))) -> *3_0, rt in Omega(n1497_0) Induction Base: exp(gen_0':s2_0(a), gen_0':s2_0(+(1, 0))) Induction Step: exp(gen_0':s2_0(a), gen_0':s2_0(+(1, +(n1497_0, 1)))) ->_R^Omega(1) times(gen_0':s2_0(a), exp(gen_0':s2_0(a), gen_0':s2_0(+(1, n1497_0)))) ->_IH times(gen_0':s2_0(a), *3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: Innermost TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) exp(x, 0') -> s(0') exp(x, s(y)) -> times(x, exp(x, y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) tower(x, y) -> towerIter(x, y, s(0')) towerIter(0', y, z) -> z towerIter(s(x), y, z) -> towerIter(p(s(x)), y, exp(y, z)) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s exp :: 0':s -> 0':s -> 0':s tower :: 0':s -> 0':s -> 0':s towerIter :: 0':s -> 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) plus(gen_0':s2_0(n245_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n245_0, b)), rt in Omega(1 + n245_0 + n245_0^2) times(gen_0':s2_0(n767_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n767_0, b)), rt in Omega(1 + b*n767_0 + b^2*n767_0 + n767_0 + n767_0^2) exp(gen_0':s2_0(a), gen_0':s2_0(+(1, n1497_0))) -> *3_0, rt in Omega(n1497_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: towerIter