/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 22 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: prime(0) -> false prime(s(0)) -> false prime(s(s(x))) -> prime1(s(s(x)), s(x)) prime1(x, 0) -> false prime1(x, s(0)) -> true prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) divp(x, y) -> =(rem(x, y), 0) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: prime(0) -> false prime(s(0)) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0) -> false prime1(z0, s(0)) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> =(rem(z0, z1), 0) Tuples: PRIME(0) -> c PRIME(s(0)) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0) -> c3 PRIME1(z0, s(0)) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1))) DIVP(z0, z1) -> c6 S tuples: PRIME(0) -> c PRIME(s(0)) -> c1 PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) PRIME1(z0, 0) -> c3 PRIME1(z0, s(0)) -> c4 PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1))) DIVP(z0, z1) -> c6 K tuples:none Defined Rule Symbols: prime_1, prime1_2, divp_2 Defined Pair Symbols: PRIME_1, PRIME1_2, DIVP_2 Compound Symbols: c, c1, c2_1, c3, c4, c5_2, c6 ---------------------------------------- (3) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: PRIME(s(s(z0))) -> c2(PRIME1(s(s(z0)), s(z0))) Removed 5 trailing nodes: PRIME1(z0, s(0)) -> c4 DIVP(z0, z1) -> c6 PRIME(s(0)) -> c1 PRIME(0) -> c PRIME1(z0, 0) -> c3 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: prime(0) -> false prime(s(0)) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0) -> false prime1(z0, s(0)) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> =(rem(z0, z1), 0) Tuples: PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1))) S tuples: PRIME1(z0, s(s(z1))) -> c5(DIVP(s(s(z1)), z0), PRIME1(z0, s(z1))) K tuples:none Defined Rule Symbols: prime_1, prime1_2, divp_2 Defined Pair Symbols: PRIME1_2 Compound Symbols: c5_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: prime(0) -> false prime(s(0)) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0) -> false prime1(z0, s(0)) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> =(rem(z0, z1), 0) Tuples: PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) S tuples: PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) K tuples:none Defined Rule Symbols: prime_1, prime1_2, divp_2 Defined Pair Symbols: PRIME1_2 Compound Symbols: c5_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: prime(0) -> false prime(s(0)) -> false prime(s(s(z0))) -> prime1(s(s(z0)), s(z0)) prime1(z0, 0) -> false prime1(z0, s(0)) -> true prime1(z0, s(s(z1))) -> and(not(divp(s(s(z1)), z0)), prime1(z0, s(z1))) divp(z0, z1) -> =(rem(z0, z1), 0) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) S tuples: PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: PRIME1_2 Compound Symbols: c5_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) We considered the (Usable) Rules:none And the Tuples: PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(PRIME1(x_1, x_2)) = x_2 POL(c5(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) S tuples:none K tuples: PRIME1(z0, s(s(z1))) -> c5(PRIME1(z0, s(z1))) Defined Rule Symbols:none Defined Pair Symbols: PRIME1_2 Compound Symbols: c5_1 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: prime(0) -> false prime(s(0)) -> false prime(s(s(x))) -> prime1(s(s(x)), s(x)) prime1(x, 0) -> false prime1(x, s(0)) -> true prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) divp(x, y) -> =(rem(x, y), 0) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence prime1(x, s(s(y))) ->^+ and(not(divp(s(s(y)), x)), prime1(x, s(y))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [y / s(y)]. The result substitution is [ ]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: prime(0) -> false prime(s(0)) -> false prime(s(s(x))) -> prime1(s(s(x)), s(x)) prime1(x, 0) -> false prime1(x, s(0)) -> true prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) divp(x, y) -> =(rem(x, y), 0) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: prime(0) -> false prime(s(0)) -> false prime(s(s(x))) -> prime1(s(s(x)), s(x)) prime1(x, 0) -> false prime1(x, s(0)) -> true prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y))) divp(x, y) -> =(rem(x, y), 0) S is empty. Rewrite Strategy: INNERMOST