/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () *** Step 1.a:1.a:1: Ara. MAYBE + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: Ara {minDegree = 1, maxDegree = 3, araTimeout = 15, araRuleShifting = Just 1, isBestCase = True, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "*") :: ["A"(0) x "A"(0)] -(0)-> "A"(0) F (TrsFun "+") :: ["A"(0) x "A"(0)] -(0)-> "A"(0) F (TrsFun "0") :: [] -(0)-> "A"(1) F (TrsFun "0") :: [] -(0)-> "A"(0) F (TrsFun "main") :: ["A"(1)] -(1)-> "A"(0) F (TrsFun "s") :: ["A"(1)] -(1)-> "A"(1) F (TrsFun "s") :: ["A"(0)] -(0)-> "A"(0) F (TrsFun "sqr") :: ["A"(0)] -(1)-> "A"(0) F (TrsFun "sum") :: ["A"(1)] -(1)-> "A"(0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) main(x1) -> sum(x1) 2. Weak: *** Step 1.a:1.b:1: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: sum(x){x -> s(x)} = sum(s(x)) ->^+ +(*(s(x),s(x)),sum(x)) = C[sum(x) = sum(x){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs sqr#(x) -> c_1() sum#(0()) -> c_2() sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sqr#(x) -> c_1() sum#(0()) -> c_2() sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) - Weak TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2} by application of Pre({1,2}) = {3,4}. Here rules are labelled as follows: 1: sqr#(x) -> c_1() 2: sum#(0()) -> c_2() 3: sum#(s(x)) -> c_3(sum#(x)) 4: sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) ** Step 1.b:3: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) - Weak DPs: sqr#(x) -> c_1() sum#(0()) -> c_2() - Weak TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:sum#(s(x)) -> c_3(sum#(x)) -->_1 sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)):2 -->_1 sum#(0()) -> c_2():4 -->_1 sum#(s(x)) -> c_3(sum#(x)):1 2:S:sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) -->_2 sum#(0()) -> c_2():4 -->_1 sqr#(x) -> c_1():3 -->_2 sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)):2 -->_2 sum#(s(x)) -> c_3(sum#(x)):1 3:W:sqr#(x) -> c_1() 4:W:sum#(0()) -> c_2() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: sqr#(x) -> c_1() 4: sum#(0()) -> c_2() ** Step 1.b:4: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) - Weak TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/2} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:sum#(s(x)) -> c_3(sum#(x)) -->_1 sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)):2 -->_1 sum#(s(x)) -> c_3(sum#(x)):1 2:S:sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)) -->_2 sum#(s(x)) -> c_4(sqr#(s(x)),sum#(x)):2 -->_2 sum#(s(x)) -> c_3(sum#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sum#(s(x)) -> c_4(sum#(x)) ** Step 1.b:5: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sum#(x)) - Weak TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sum#(x)) ** Step 1.b:6: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sum#(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: {sqr#,sum#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [1] p(+) = [1] x1 + [1] x2 + [1] p(0) = [1] p(s) = [1] x1 + [1] p(sqr) = [1] x1 + [2] p(sum) = [2] x1 + [1] p(sqr#) = [1] x1 + [1] p(sum#) = [8] x1 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [8] Following rules are strictly oriented: sum#(s(x)) = [8] x + [8] > [8] x + [0] = c_3(sum#(x)) Following rules are (at-least) weakly oriented: sum#(s(x)) = [8] x + [8] >= [8] x + [8] = c_4(sum#(x)) ** Step 1.b:7: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(s(x)) -> c_4(sum#(x)) - Weak DPs: sum#(s(x)) -> c_3(sum#(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: {sqr#,sum#} TcT has computed the following interpretation: p(*) = [1] x2 + [1] p(+) = [2] p(0) = [1] p(s) = [1] x1 + [8] p(sqr) = [0] p(sum) = [2] x1 + [2] p(sqr#) = [2] x1 + [0] p(sum#) = [1] x1 + [0] p(c_1) = [1] p(c_2) = [0] p(c_3) = [1] x1 + [3] p(c_4) = [1] x1 + [6] Following rules are strictly oriented: sum#(s(x)) = [1] x + [8] > [1] x + [6] = c_4(sum#(x)) Following rules are (at-least) weakly oriented: sum#(s(x)) = [1] x + [8] >= [1] x + [3] = c_3(sum#(x)) ** Step 1.b:8: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(s(x)) -> c_3(sum#(x)) sum#(s(x)) -> c_4(sum#(x)) - Signature: {sqr/1,sum/1,sqr#/1,sum#/1} / {*/2,+/2,0/0,s/1,c_1/0,c_2/0,c_3/1,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {sqr#,sum#} and constructors {*,+,0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))