/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 8 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 1 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 52 ms] (10) CdtProblem (11) CdtKnowledgeProof [FINISHED, 0 ms] (12) BOUNDS(1, 1) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: del(.(x, .(y, z))) -> f(=(x, y), x, y, z) f(true, x, y, z) -> del(.(y, z)) f(false, x, y, z) -> .(x, del(.(y, z))) =(nil, nil) -> true =(.(x, y), nil) -> false =(nil, .(y, z)) -> false =(.(x, y), .(u, v)) -> and(=(x, u), =(y, v)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: del(.(z0, .(z1, z2))) -> f(=(z0, z1), z0, z1, z2) f(true, z0, z1, z2) -> del(.(z1, z2)) f(false, z0, z1, z2) -> .(z0, del(.(z1, z2))) =(nil, nil) -> true =(.(z0, z1), nil) -> false =(nil, .(z0, z1)) -> false =(.(z0, z1), .(u, v)) -> and(=(z0, u), =(z1, v)) Tuples: DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2), ='(z0, z1)) F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) ='(nil, nil) -> c3 ='(.(z0, z1), nil) -> c4 ='(nil, .(z0, z1)) -> c5 ='(.(z0, z1), .(u, v)) -> c6(='(z0, u), ='(z1, v)) S tuples: DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2), ='(z0, z1)) F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) ='(nil, nil) -> c3 ='(.(z0, z1), nil) -> c4 ='(nil, .(z0, z1)) -> c5 ='(.(z0, z1), .(u, v)) -> c6(='(z0, u), ='(z1, v)) K tuples:none Defined Rule Symbols: del_1, f_4, =_2 Defined Pair Symbols: DEL_1, F_4, ='_2 Compound Symbols: c_2, c1_1, c2_1, c3, c4, c5, c6_2 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: ='(nil, .(z0, z1)) -> c5 ='(.(z0, z1), nil) -> c4 ='(nil, nil) -> c3 ='(.(z0, z1), .(u, v)) -> c6(='(z0, u), ='(z1, v)) ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: del(.(z0, .(z1, z2))) -> f(=(z0, z1), z0, z1, z2) f(true, z0, z1, z2) -> del(.(z1, z2)) f(false, z0, z1, z2) -> .(z0, del(.(z1, z2))) =(nil, nil) -> true =(.(z0, z1), nil) -> false =(nil, .(z0, z1)) -> false =(.(z0, z1), .(u, v)) -> and(=(z0, u), =(z1, v)) Tuples: DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2), ='(z0, z1)) F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) S tuples: DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2), ='(z0, z1)) F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) K tuples:none Defined Rule Symbols: del_1, f_4, =_2 Defined Pair Symbols: DEL_1, F_4 Compound Symbols: c_2, c1_1, c2_1 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: del(.(z0, .(z1, z2))) -> f(=(z0, z1), z0, z1, z2) f(true, z0, z1, z2) -> del(.(z1, z2)) f(false, z0, z1, z2) -> .(z0, del(.(z1, z2))) =(nil, nil) -> true =(.(z0, z1), nil) -> false =(nil, .(z0, z1)) -> false =(.(z0, z1), .(u, v)) -> and(=(z0, u), =(z1, v)) Tuples: F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) S tuples: F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) K tuples:none Defined Rule Symbols: del_1, f_4, =_2 Defined Pair Symbols: F_4, DEL_1 Compound Symbols: c1_1, c2_1, c_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: del(.(z0, .(z1, z2))) -> f(=(z0, z1), z0, z1, z2) f(true, z0, z1, z2) -> del(.(z1, z2)) f(false, z0, z1, z2) -> .(z0, del(.(z1, z2))) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: =(nil, nil) -> true =(.(z0, z1), nil) -> false =(nil, .(z0, z1)) -> false =(.(z0, z1), .(u, v)) -> and(=(z0, u), =(z1, v)) Tuples: F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) S tuples: F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) K tuples:none Defined Rule Symbols: =_2 Defined Pair Symbols: F_4, DEL_1 Compound Symbols: c1_1, c2_1, c_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) We considered the (Usable) Rules:none And the Tuples: F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(.(x_1, x_2)) = [1] + x_1 + x_2 POL(=(x_1, x_2)) = [1] POL(DEL(x_1)) = x_1 POL(F(x_1, x_2, x_3, x_4)) = [1] + x_2 + x_3 + x_4 POL(and(x_1, x_2)) = [1] + x_1 + x_2 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(false) = [1] POL(nil) = [1] POL(true) = [1] POL(u) = [1] POL(v) = [1] ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: =(nil, nil) -> true =(.(z0, z1), nil) -> false =(nil, .(z0, z1)) -> false =(.(z0, z1), .(u, v)) -> and(=(z0, u), =(z1, v)) Tuples: F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) S tuples: F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) K tuples: DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) Defined Rule Symbols: =_2 Defined Pair Symbols: F_4, DEL_1 Compound Symbols: c1_1, c2_1, c_1 ---------------------------------------- (11) CdtKnowledgeProof (FINISHED) The following tuples could be moved from S to K by knowledge propagation: F(true, z0, z1, z2) -> c1(DEL(.(z1, z2))) F(false, z0, z1, z2) -> c2(DEL(.(z1, z2))) DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) DEL(.(z0, .(z1, z2))) -> c(F(=(z0, z1), z0, z1, z2)) Now S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: del(.(x, .(y, z))) -> f(=(x, y), x, y, z) f(true, x, y, z) -> del(.(y, z)) f(false, x, y, z) -> .(x, del(.(y, z))) =(nil, nil) -> true =(.(x, y), nil) -> false =(nil, .(y, z)) -> false =(.(x, y), .(u, v)) -> and(=(x, u), =(y, v)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(true, x, nil, .(nil, z3_0)) ->^+ f(true, nil, nil, z3_0) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [z3_0 / .(nil, z3_0)]. The result substitution is [x / nil]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: del(.(x, .(y, z))) -> f(=(x, y), x, y, z) f(true, x, y, z) -> del(.(y, z)) f(false, x, y, z) -> .(x, del(.(y, z))) =(nil, nil) -> true =(.(x, y), nil) -> false =(nil, .(y, z)) -> false =(.(x, y), .(u, v)) -> and(=(x, u), =(y, v)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: del(.(x, .(y, z))) -> f(=(x, y), x, y, z) f(true, x, y, z) -> del(.(y, z)) f(false, x, y, z) -> .(x, del(.(y, z))) =(nil, nil) -> true =(.(x, y), nil) -> false =(nil, .(y, z)) -> false =(.(x, y), .(u, v)) -> and(=(x, u), =(y, v)) S is empty. Rewrite Strategy: INNERMOST