/export/starexec/sandbox2/solver/bin/starexec_run_tct_rci /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^2)) * Step 1: Sum. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1} / {0/0,greater/2,if/3,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {-,p} and constructors {0,greater,if,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1} / {0/0,greater/2,if/3,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {-,p} and constructors {0,greater,if,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs -#(x,0()) -> c_1() -#(x,s(y)) -> c_2(-#(x,p(s(y))),p#(s(y))) -#(0(),y) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5() Weak DPs and mark the set of starting terms. * Step 3: PredecessorEstimation. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1() -#(x,s(y)) -> c_2(-#(x,p(s(y))),p#(s(y))) -#(0(),y) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5() - Weak TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4,5} by application of Pre({1,3,4,5}) = {2}. Here rules are labelled as follows: 1: -#(x,0()) -> c_1() 2: -#(x,s(y)) -> c_2(-#(x,p(s(y))),p#(s(y))) 3: -#(0(),y) -> c_3() 4: p#(0()) -> c_4() 5: p#(s(x)) -> c_5() * Step 4: RemoveWeakSuffixes. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,s(y)) -> c_2(-#(x,p(s(y))),p#(s(y))) - Weak DPs: -#(x,0()) -> c_1() -#(0(),y) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5() - Weak TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:-#(x,s(y)) -> c_2(-#(x,p(s(y))),p#(s(y))) -->_2 p#(s(x)) -> c_5():5 -->_1 -#(0(),y) -> c_3():3 -->_1 -#(x,0()) -> c_1():2 -->_1 -#(x,s(y)) -> c_2(-#(x,p(s(y))),p#(s(y))):1 2:W:-#(x,0()) -> c_1() 3:W:-#(0(),y) -> c_3() 4:W:p#(0()) -> c_4() 5:W:p#(s(x)) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: p#(0()) -> c_4() 2: -#(x,0()) -> c_1() 3: -#(0(),y) -> c_3() 5: p#(s(x)) -> c_5() * Step 5: SimplifyRHS. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,s(y)) -> c_2(-#(x,p(s(y))),p#(s(y))) - Weak TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:-#(x,s(y)) -> c_2(-#(x,p(s(y))),p#(s(y))) -->_1 -#(x,s(y)) -> c_2(-#(x,p(s(y))),p#(s(y))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: -#(x,s(y)) -> c_2(-#(x,p(s(y)))) * Step 6: UsableRules. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,s(y)) -> c_2(-#(x,p(s(y)))) - Weak TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: p(s(x)) -> x -#(x,s(y)) -> c_2(-#(x,p(s(y)))) * Step 7: Ara. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,s(y)) -> c_2(-#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: Ara {minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1, isBestCase = False, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "p") :: ["A"(0, 2)] -(0)-> "A"(1, 2) F (TrsFun "s") :: ["A"(3, 2)] -(1)-> "A"(1, 2) F (TrsFun "s") :: ["A"(2, 2)] -(0)-> "A"(0, 2) F (DpFun "-") :: ["A"(0, 0) x "A"(1, 2)] -(0)-> "A"(0, 0) F (ComFun 2) :: ["A"(0, 0)] -(0)-> "A"(0, 0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: -#(x,s(y)) -> c_2(-#(x,p(s(y)))) 2. Weak: WORST_CASE(?,O(n^2))