/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 198 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 574 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev(nil) -> nil rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y)) rev1(x, nil) -> x rev1(x, ++(y, z)) -> rev1(y, z) rev2(x, nil) -> nil rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev(nil) -> nil rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y)) rev1(x, nil) -> x rev1(x, ++(y, z)) -> rev1(y, z) rev2(x, nil) -> nil rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: rev(nil) -> nil rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y)) rev1(x, nil) -> x rev1(x, ++(y, z)) -> rev1(y, z) rev2(x, nil) -> nil rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z)))) Types: rev :: nil:++ -> nil:++ nil :: nil:++ ++ :: rev1 -> nil:++ -> nil:++ rev1 :: rev1 -> nil:++ -> rev1 rev2 :: rev1 -> nil:++ -> nil:++ hole_nil:++1_0 :: nil:++ hole_rev12_0 :: rev1 gen_nil:++3_0 :: Nat -> nil:++ ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: rev, rev1, rev2 They will be analysed ascendingly in the following order: rev1 < rev rev = rev2 ---------------------------------------- (6) Obligation: Innermost TRS: Rules: rev(nil) -> nil rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y)) rev1(x, nil) -> x rev1(x, ++(y, z)) -> rev1(y, z) rev2(x, nil) -> nil rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z)))) Types: rev :: nil:++ -> nil:++ nil :: nil:++ ++ :: rev1 -> nil:++ -> nil:++ rev1 :: rev1 -> nil:++ -> rev1 rev2 :: rev1 -> nil:++ -> nil:++ hole_nil:++1_0 :: nil:++ hole_rev12_0 :: rev1 gen_nil:++3_0 :: Nat -> nil:++ Generator Equations: gen_nil:++3_0(0) <=> nil gen_nil:++3_0(+(x, 1)) <=> ++(hole_rev12_0, gen_nil:++3_0(x)) The following defined symbols remain to be analysed: rev1, rev, rev2 They will be analysed ascendingly in the following order: rev1 < rev rev = rev2 ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rev1(hole_rev12_0, gen_nil:++3_0(n5_0)) -> hole_rev12_0, rt in Omega(1 + n5_0) Induction Base: rev1(hole_rev12_0, gen_nil:++3_0(0)) ->_R^Omega(1) hole_rev12_0 Induction Step: rev1(hole_rev12_0, gen_nil:++3_0(+(n5_0, 1))) ->_R^Omega(1) rev1(hole_rev12_0, gen_nil:++3_0(n5_0)) ->_IH hole_rev12_0 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: rev(nil) -> nil rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y)) rev1(x, nil) -> x rev1(x, ++(y, z)) -> rev1(y, z) rev2(x, nil) -> nil rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z)))) Types: rev :: nil:++ -> nil:++ nil :: nil:++ ++ :: rev1 -> nil:++ -> nil:++ rev1 :: rev1 -> nil:++ -> rev1 rev2 :: rev1 -> nil:++ -> nil:++ hole_nil:++1_0 :: nil:++ hole_rev12_0 :: rev1 gen_nil:++3_0 :: Nat -> nil:++ Generator Equations: gen_nil:++3_0(0) <=> nil gen_nil:++3_0(+(x, 1)) <=> ++(hole_rev12_0, gen_nil:++3_0(x)) The following defined symbols remain to be analysed: rev1, rev, rev2 They will be analysed ascendingly in the following order: rev1 < rev rev = rev2 ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: rev(nil) -> nil rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y)) rev1(x, nil) -> x rev1(x, ++(y, z)) -> rev1(y, z) rev2(x, nil) -> nil rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z)))) Types: rev :: nil:++ -> nil:++ nil :: nil:++ ++ :: rev1 -> nil:++ -> nil:++ rev1 :: rev1 -> nil:++ -> rev1 rev2 :: rev1 -> nil:++ -> nil:++ hole_nil:++1_0 :: nil:++ hole_rev12_0 :: rev1 gen_nil:++3_0 :: Nat -> nil:++ Lemmas: rev1(hole_rev12_0, gen_nil:++3_0(n5_0)) -> hole_rev12_0, rt in Omega(1 + n5_0) Generator Equations: gen_nil:++3_0(0) <=> nil gen_nil:++3_0(+(x, 1)) <=> ++(hole_rev12_0, gen_nil:++3_0(x)) The following defined symbols remain to be analysed: rev2, rev They will be analysed ascendingly in the following order: rev = rev2 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rev2(hole_rev12_0, gen_nil:++3_0(+(1, n128_0))) -> *4_0, rt in Omega(n128_0) Induction Base: rev2(hole_rev12_0, gen_nil:++3_0(+(1, 0))) Induction Step: rev2(hole_rev12_0, gen_nil:++3_0(+(1, +(n128_0, 1)))) ->_R^Omega(1) rev(++(hole_rev12_0, rev(rev2(hole_rev12_0, gen_nil:++3_0(+(1, n128_0)))))) ->_IH rev(++(hole_rev12_0, rev(*4_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: rev(nil) -> nil rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y)) rev1(x, nil) -> x rev1(x, ++(y, z)) -> rev1(y, z) rev2(x, nil) -> nil rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z)))) Types: rev :: nil:++ -> nil:++ nil :: nil:++ ++ :: rev1 -> nil:++ -> nil:++ rev1 :: rev1 -> nil:++ -> rev1 rev2 :: rev1 -> nil:++ -> nil:++ hole_nil:++1_0 :: nil:++ hole_rev12_0 :: rev1 gen_nil:++3_0 :: Nat -> nil:++ Lemmas: rev1(hole_rev12_0, gen_nil:++3_0(n5_0)) -> hole_rev12_0, rt in Omega(1 + n5_0) rev2(hole_rev12_0, gen_nil:++3_0(+(1, n128_0))) -> *4_0, rt in Omega(n128_0) Generator Equations: gen_nil:++3_0(0) <=> nil gen_nil:++3_0(+(x, 1)) <=> ++(hole_rev12_0, gen_nil:++3_0(x)) The following defined symbols remain to be analysed: rev They will be analysed ascendingly in the following order: rev = rev2