/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^2)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) -(x,0()) -> x -(0(),y) -> 0() -(s(x),s(y)) -> -(x,y) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {*,-,exp} and constructors {+,0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) -(x,0()) -> x -(0(),y) -> 0() -(s(x),s(y)) -> -(x,y) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {*,-,exp} and constructors {+,0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () *** Step 1.a:1.a:1: Ara. MAYBE + Considered Problem: - Strict TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) -(x,0()) -> x -(0(),y) -> 0() -(s(x),s(y)) -> -(x,y) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {*,-,exp} and constructors {+,0,s} + Applied Processor: Ara {minDegree = 1, maxDegree = 3, araTimeout = 15, araRuleShifting = Just 1, isBestCase = True, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "*") :: ["A"(0) x "A"(0)] -(1)-> "A"(0) F (TrsFun "+") :: ["A"(0) x "A"(0)] -(0)-> "A"(0) F (TrsFun "-") :: ["A"(0) x "A"(0)] -(1)-> "A"(0) F (TrsFun "0") :: [] -(0)-> "A"(0) F (TrsFun "0") :: [] -(0)-> "A"(1) F (TrsFun "exp") :: ["A"(0) x "A"(1)] -(1)-> "A"(0) F (TrsFun "main") :: ["A"(0) x "A"(1)] -(1)-> "A"(0) F (TrsFun "s") :: ["A"(0)] -(0)-> "A"(0) F (TrsFun "s") :: ["A"(1)] -(1)-> "A"(1) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) -(x,0()) -> x -(0(),y) -> 0() -(s(x),s(y)) -> -(x,y) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) main(x1,x2) -> exp(x1,x2) 2. Weak: *** Step 1.a:1.b:1: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) -(x,0()) -> x -(0(),y) -> 0() -(s(x),s(y)) -> -(x,y) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {*,-,exp} and constructors {+,0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: *(x,y){x -> s(x)} = *(s(x),y) ->^+ +(y,*(x,y)) = C[*(x,y) = *(x,y){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) -(x,0()) -> x -(0(),y) -> 0() -(s(x),s(y)) -> -(x,y) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {*,-,exp} and constructors {+,0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs *#(0(),y) -> c_1() *#(s(x),y) -> c_2(*#(x,y)) -#(x,0()) -> c_3() -#(0(),y) -> c_4() -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,0()) -> c_6() exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: *#(0(),y) -> c_1() *#(s(x),y) -> c_2(*#(x,y)) -#(x,0()) -> c_3() -#(0(),y) -> c_4() -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,0()) -> c_6() exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) - Weak TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) -(x,0()) -> x -(0(),y) -> 0() -(s(x),s(y)) -> -(x,y) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4,6} by application of Pre({1,3,4,6}) = {2,5,7}. Here rules are labelled as follows: 1: *#(0(),y) -> c_1() 2: *#(s(x),y) -> c_2(*#(x,y)) 3: -#(x,0()) -> c_3() 4: -#(0(),y) -> c_4() 5: -#(s(x),s(y)) -> c_5(-#(x,y)) 6: exp#(x,0()) -> c_6() 7: exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) ** Step 1.b:3: RemoveWeakSuffixes. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: *#(s(x),y) -> c_2(*#(x,y)) -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) - Weak DPs: *#(0(),y) -> c_1() -#(x,0()) -> c_3() -#(0(),y) -> c_4() exp#(x,0()) -> c_6() - Weak TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) -(x,0()) -> x -(0(),y) -> 0() -(s(x),s(y)) -> -(x,y) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:*#(s(x),y) -> c_2(*#(x,y)) -->_1 *#(0(),y) -> c_1():4 -->_1 *#(s(x),y) -> c_2(*#(x,y)):1 2:S:-#(s(x),s(y)) -> c_5(-#(x,y)) -->_1 -#(0(),y) -> c_4():6 -->_1 -#(x,0()) -> c_3():5 -->_1 -#(s(x),s(y)) -> c_5(-#(x,y)):2 3:S:exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) -->_2 exp#(x,0()) -> c_6():7 -->_1 *#(0(),y) -> c_1():4 -->_2 exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)):3 -->_1 *#(s(x),y) -> c_2(*#(x,y)):1 4:W:*#(0(),y) -> c_1() 5:W:-#(x,0()) -> c_3() 6:W:-#(0(),y) -> c_4() 7:W:exp#(x,0()) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: exp#(x,0()) -> c_6() 5: -#(x,0()) -> c_3() 6: -#(0(),y) -> c_4() 4: *#(0(),y) -> c_1() ** Step 1.b:4: UsableRules. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: *#(s(x),y) -> c_2(*#(x,y)) -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) - Weak TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) -(x,0()) -> x -(0(),y) -> 0() -(s(x),s(y)) -> -(x,y) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) *#(s(x),y) -> c_2(*#(x,y)) -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) ** Step 1.b:5: DecomposeDG. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: *#(s(x),y) -> c_2(*#(x,y)) -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) - Weak TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) and a lower component *#(s(x),y) -> c_2(*#(x,y)) Further, following extension rules are added to the lower component. -#(s(x),s(y)) -> -#(x,y) exp#(x,s(y)) -> *#(x,exp(x,y)) exp#(x,s(y)) -> exp#(x,y) *** Step 1.b:5.a:1: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) - Weak TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:-#(s(x),s(y)) -> c_5(-#(x,y)) -->_1 -#(s(x),s(y)) -> c_5(-#(x,y)):1 2:S:exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)) -->_2 exp#(x,s(y)) -> c_7(*#(x,exp(x,y)),exp#(x,y)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: exp#(x,s(y)) -> c_7(exp#(x,y)) *** Step 1.b:5.a:2: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(exp#(x,y)) - Weak TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(exp#(x,y)) *** Step 1.b:5.a:3: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(exp#(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_7) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(*) = [0] p(+) = [1] x1 + [1] x2 + [0] p(-) = [0] p(0) = [0] p(exp) = [0] p(s) = [1] x1 + [2] p(*#) = [0] p(-#) = [2] x2 + [0] p(exp#) = [8] x2 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [1] x1 + [0] Following rules are strictly oriented: -#(s(x),s(y)) = [2] y + [4] > [2] y + [0] = c_5(-#(x,y)) exp#(x,s(y)) = [8] y + [16] > [8] y + [0] = c_7(exp#(x,y)) Following rules are (at-least) weakly oriented: Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** Step 1.b:5.a:4: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: -#(s(x),s(y)) -> c_5(-#(x,y)) exp#(x,s(y)) -> c_7(exp#(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:5.b:1: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: *#(s(x),y) -> c_2(*#(x,y)) - Weak DPs: -#(s(x),s(y)) -> -#(x,y) exp#(x,s(y)) -> *#(x,exp(x,y)) exp#(x,s(y)) -> exp#(x,y) - Weak TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:*#(s(x),y) -> c_2(*#(x,y)) -->_1 *#(s(x),y) -> c_2(*#(x,y)):1 2:W:-#(s(x),s(y)) -> -#(x,y) -->_1 -#(s(x),s(y)) -> -#(x,y):2 3:W:exp#(x,s(y)) -> *#(x,exp(x,y)) -->_1 *#(s(x),y) -> c_2(*#(x,y)):1 4:W:exp#(x,s(y)) -> exp#(x,y) -->_1 exp#(x,s(y)) -> exp#(x,y):4 -->_1 exp#(x,s(y)) -> *#(x,exp(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: -#(s(x),s(y)) -> -#(x,y) *** Step 1.b:5.b:2: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: *#(s(x),y) -> c_2(*#(x,y)) - Weak DPs: exp#(x,s(y)) -> *#(x,exp(x,y)) exp#(x,s(y)) -> exp#(x,y) - Weak TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {*#,-#,exp#} TcT has computed the following interpretation: p(*) = [5] p(+) = [1] x1 + [1] x2 + [0] p(-) = [0] p(0) = [0] p(exp) = [0] p(s) = [1] x1 + [9] p(*#) = [2] x1 + [0] p(-#) = [0] p(exp#) = [8] x1 + [1] p(c_1) = [0] p(c_2) = [1] x1 + [10] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [1] x1 + [0] Following rules are strictly oriented: *#(s(x),y) = [2] x + [18] > [2] x + [10] = c_2(*#(x,y)) Following rules are (at-least) weakly oriented: exp#(x,s(y)) = [8] x + [1] >= [2] x + [0] = *#(x,exp(x,y)) exp#(x,s(y)) = [8] x + [1] >= [8] x + [1] = exp#(x,y) *** Step 1.b:5.b:3: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: *#(s(x),y) -> c_2(*#(x,y)) exp#(x,s(y)) -> *#(x,exp(x,y)) exp#(x,s(y)) -> exp#(x,y) - Weak TRS: *(0(),y) -> 0() *(s(x),y) -> +(y,*(x,y)) exp(x,0()) -> s(0()) exp(x,s(y)) -> *(x,exp(x,y)) - Signature: {*/2,-/2,exp/2,*#/2,-#/2,exp#/2} / {+/2,0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {*#,-#,exp#} and constructors {+,0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))