/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) sum1(0()) -> 0() sum1(s(x)) -> s(+(sum1(x),+(x,x))) - Signature: {sum/1,sum1/1} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sum,sum1} and constructors {+,0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) sum1(0()) -> 0() sum1(s(x)) -> s(+(sum1(x),+(x,x))) - Signature: {sum/1,sum1/1} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sum,sum1} and constructors {+,0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () *** Step 1.a:1.a:1: Ara. MAYBE + Considered Problem: - Strict TRS: sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) sum1(0()) -> 0() sum1(s(x)) -> s(+(sum1(x),+(x,x))) - Signature: {sum/1,sum1/1} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sum,sum1} and constructors {+,0,s} + Applied Processor: Ara {minDegree = 1, maxDegree = 3, araTimeout = 15, araRuleShifting = Just 1, isBestCase = True, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "+") :: ["A"(0) x "A"(0)] -(0)-> "A"(0) F (TrsFun "0") :: [] -(0)-> "A"(0) F (TrsFun "0") :: [] -(0)-> "A"(1) F (TrsFun "main") :: ["A"(1)] -(1)-> "A"(0) F (TrsFun "s") :: ["A"(0)] -(0)-> "A"(0) F (TrsFun "s") :: ["A"(1)] -(1)-> "A"(1) F (TrsFun "sum") :: ["A"(0)] -(1)-> "A"(0) F (TrsFun "sum1") :: ["A"(1)] -(1)-> "A"(0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) sum1(0()) -> 0() sum1(s(x)) -> s(+(sum1(x),+(x,x))) main(x1) -> sum1(x1) 2. Weak: *** Step 1.a:1.b:1: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) sum1(0()) -> 0() sum1(s(x)) -> s(+(sum1(x),+(x,x))) - Signature: {sum/1,sum1/1} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sum,sum1} and constructors {+,0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: sum(x){x -> s(x)} = sum(s(x)) ->^+ +(sum(x),s(x)) = C[sum(x) = sum(x){}] ** Step 1.b:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) sum1(0()) -> 0() sum1(s(x)) -> s(+(sum1(x),+(x,x))) - Signature: {sum/1,sum1/1} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sum,sum1} and constructors {+,0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(+) = {1}, uargs(s) = {1} Following symbols are considered usable: {sum,sum1} TcT has computed the following interpretation: p(+) = [1] x1 + [6] p(0) = [1] p(s) = [1] x1 + [8] p(sum) = [1] x1 + [8] p(sum1) = [2] x1 + [10] Following rules are strictly oriented: sum(0()) = [9] > [1] = 0() sum(s(x)) = [1] x + [16] > [1] x + [14] = +(sum(x),s(x)) sum1(0()) = [12] > [1] = 0() sum1(s(x)) = [2] x + [26] > [2] x + [24] = s(+(sum1(x),+(x,x))) Following rules are (at-least) weakly oriented: ** Step 1.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: sum(0()) -> 0() sum(s(x)) -> +(sum(x),s(x)) sum1(0()) -> 0() sum1(s(x)) -> s(+(sum1(x),+(x,x))) - Signature: {sum/1,sum1/1} / {+/2,0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sum,sum1} and constructors {+,0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))