/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 4 ms] (6) CpxTypedWeightedCompleteTrs (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (8) CpxRNTS (9) CompleteCoflocoProof [FINISHED, 129 ms] (10) BOUNDS(1, n^1) (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTRS (13) SlicingProof [LOWER BOUND(ID), 0 ms] (14) CpxTRS (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) typed CpxTrs (17) OrderProof [LOWER BOUND(ID), 0 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 1885 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) sum1(0) -> 0 sum1(s(x)) -> s(+(sum1(x), +(x, x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sum(x), s(x)) [1] sum1(0) -> 0 [1] sum1(s(x)) -> s(+(sum1(x), +(x, x))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sum(x), s(x)) [1] sum1(0) -> 0 [1] sum1(s(x)) -> s(+(sum1(x), +(x, x))) [1] The TRS has the following type information: sum :: 0:s:+ -> 0:s:+ 0 :: 0:s:+ s :: 0:s:+ -> 0:s:+ + :: 0:s:+ -> 0:s:+ -> 0:s:+ sum1 :: 0:s:+ -> 0:s:+ Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: sum(v0) -> null_sum [0] sum1(v0) -> null_sum1 [0] And the following fresh constants: null_sum, null_sum1 ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sum(x), s(x)) [1] sum1(0) -> 0 [1] sum1(s(x)) -> s(+(sum1(x), +(x, x))) [1] sum(v0) -> null_sum [0] sum1(v0) -> null_sum1 [0] The TRS has the following type information: sum :: 0:s:+:null_sum:null_sum1 -> 0:s:+:null_sum:null_sum1 0 :: 0:s:+:null_sum:null_sum1 s :: 0:s:+:null_sum:null_sum1 -> 0:s:+:null_sum:null_sum1 + :: 0:s:+:null_sum:null_sum1 -> 0:s:+:null_sum:null_sum1 -> 0:s:+:null_sum:null_sum1 sum1 :: 0:s:+:null_sum:null_sum1 -> 0:s:+:null_sum:null_sum1 null_sum :: 0:s:+:null_sum:null_sum1 null_sum1 :: 0:s:+:null_sum:null_sum1 Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 null_sum => 0 null_sum1 => 0 ---------------------------------------- (8) Obligation: Complexity RNTS consisting of the following rules: sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 sum(z) -{ 1 }-> 1 + sum(x) + (1 + x) :|: x >= 0, z = 1 + x sum1(z) -{ 1 }-> 0 :|: z = 0 sum1(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 sum1(z) -{ 1 }-> 1 + (1 + sum1(x) + (1 + x + x)) :|: x >= 0, z = 1 + x Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (9) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V),0,[sum(V, Out)],[V >= 0]). eq(start(V),0,[sum1(V, Out)],[V >= 0]). eq(sum(V, Out),1,[],[Out = 0,V = 0]). eq(sum(V, Out),1,[sum(V1, Ret01)],[Out = 2 + Ret01 + V1,V1 >= 0,V = 1 + V1]). eq(sum1(V, Out),1,[],[Out = 0,V = 0]). eq(sum1(V, Out),1,[sum1(V2, Ret101)],[Out = 3 + Ret101 + 2*V2,V2 >= 0,V = 1 + V2]). eq(sum(V, Out),0,[],[Out = 0,V3 >= 0,V = V3]). eq(sum1(V, Out),0,[],[Out = 0,V4 >= 0,V = V4]). input_output_vars(sum(V,Out),[V],[Out]). input_output_vars(sum1(V,Out),[V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [sum/2] 1. recursive : [sum1/2] 2. non_recursive : [start/1] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into sum/2 1. SCC is partially evaluated into sum1/2 2. SCC is partially evaluated into start/1 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations sum/2 * CE 3 is refined into CE [9] * CE 5 is refined into CE [10] * CE 4 is refined into CE [11] ### Cost equations --> "Loop" of sum/2 * CEs [11] --> Loop 6 * CEs [9,10] --> Loop 7 ### Ranking functions of CR sum(V,Out) * RF of phase [6]: [V] #### Partial ranking functions of CR sum(V,Out) * Partial RF of phase [6]: - RF of loop [6:1]: V ### Specialization of cost equations sum1/2 * CE 6 is refined into CE [12] * CE 8 is refined into CE [13] * CE 7 is refined into CE [14] ### Cost equations --> "Loop" of sum1/2 * CEs [14] --> Loop 8 * CEs [12,13] --> Loop 9 ### Ranking functions of CR sum1(V,Out) * RF of phase [8]: [V] #### Partial ranking functions of CR sum1(V,Out) * Partial RF of phase [8]: - RF of loop [8:1]: V ### Specialization of cost equations start/1 * CE 1 is refined into CE [15,16] * CE 2 is refined into CE [17,18] ### Cost equations --> "Loop" of start/1 * CEs [15,16,17,18] --> Loop 10 ### Ranking functions of CR start(V) #### Partial ranking functions of CR start(V) Computing Bounds ===================================== #### Cost of chains of sum(V,Out): * Chain [[6],7]: 1*it(6)+1 Such that:it(6) =< V with precondition: [V>=1,Out>=V+1] * Chain [7]: 1 with precondition: [Out=0,V>=0] #### Cost of chains of sum1(V,Out): * Chain [[8],9]: 1*it(8)+1 Such that:it(8) =< V with precondition: [V>=1,Out>=2*V+1] * Chain [9]: 1 with precondition: [Out=0,V>=0] #### Cost of chains of start(V): * Chain [10]: 2*s(1)+1 Such that:aux(1) =< V s(1) =< aux(1) with precondition: [V>=0] Closed-form bounds of start(V): ------------------------------------- * Chain [10] with precondition: [V>=0] - Upper bound: 2*V+1 - Complexity: n ### Maximum cost of start(V): 2*V+1 Asymptotic class: n * Total analysis performed in 57 ms. ---------------------------------------- (10) BOUNDS(1, n^1) ---------------------------------------- (11) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x), +'(x, x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: +'/1 ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' ---------------------------------------- (17) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sum, sum1 ---------------------------------------- (18) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' Generator Equations: gen_0':s:+'2_0(0) <=> 0' gen_0':s:+'2_0(+(x, 1)) <=> s(gen_0':s:+'2_0(x)) The following defined symbols remain to be analysed: sum, sum1 ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_0':s:+'2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: sum(gen_0':s:+'2_0(+(1, 0))) Induction Step: sum(gen_0':s:+'2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) +'(sum(gen_0':s:+'2_0(+(1, n4_0)))) ->_IH +'(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' Generator Equations: gen_0':s:+'2_0(0) <=> 0' gen_0':s:+'2_0(+(x, 1)) <=> s(gen_0':s:+'2_0(x)) The following defined symbols remain to be analysed: sum, sum1 ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: Innermost TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x)) sum1(0') -> 0' sum1(s(x)) -> s(+'(sum1(x))) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: 0':s:+' -> 0':s:+' sum1 :: 0':s:+' -> 0':s:+' hole_0':s:+'1_0 :: 0':s:+' gen_0':s:+'2_0 :: Nat -> 0':s:+' Lemmas: sum(gen_0':s:+'2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_0':s:+'2_0(0) <=> 0' gen_0':s:+'2_0(+(x, 1)) <=> s(gen_0':s:+'2_0(x)) The following defined symbols remain to be analysed: sum1