/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 16 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) (13) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTRS (15) SlicingProof [LOWER BOUND(ID), 0 ms] (16) CpxTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 201 ms] (22) proven lower bound (23) LowerBoundPropagationProof [FINISHED, 0 ms] (24) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(x, nil) -> false mem(x, set(y)) -> =(x, y) mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: or(true, z0) -> true or(z0, true) -> true or(false, false) -> false mem(z0, nil) -> false mem(z0, set(z1)) -> =(z0, z1) mem(z0, union(z1, z2)) -> or(mem(z0, z1), mem(z0, z2)) Tuples: OR(true, z0) -> c OR(z0, true) -> c1 OR(false, false) -> c2 MEM(z0, nil) -> c3 MEM(z0, set(z1)) -> c4 MEM(z0, union(z1, z2)) -> c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2)) S tuples: OR(true, z0) -> c OR(z0, true) -> c1 OR(false, false) -> c2 MEM(z0, nil) -> c3 MEM(z0, set(z1)) -> c4 MEM(z0, union(z1, z2)) -> c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2)) K tuples:none Defined Rule Symbols: or_2, mem_2 Defined Pair Symbols: OR_2, MEM_2 Compound Symbols: c, c1, c2, c3, c4, c5_3 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: MEM(z0, nil) -> c3 OR(z0, true) -> c1 OR(false, false) -> c2 MEM(z0, set(z1)) -> c4 OR(true, z0) -> c ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: or(true, z0) -> true or(z0, true) -> true or(false, false) -> false mem(z0, nil) -> false mem(z0, set(z1)) -> =(z0, z1) mem(z0, union(z1, z2)) -> or(mem(z0, z1), mem(z0, z2)) Tuples: MEM(z0, union(z1, z2)) -> c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2)) S tuples: MEM(z0, union(z1, z2)) -> c5(OR(mem(z0, z1), mem(z0, z2)), MEM(z0, z1), MEM(z0, z2)) K tuples:none Defined Rule Symbols: or_2, mem_2 Defined Pair Symbols: MEM_2 Compound Symbols: c5_3 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: or(true, z0) -> true or(z0, true) -> true or(false, false) -> false mem(z0, nil) -> false mem(z0, set(z1)) -> =(z0, z1) mem(z0, union(z1, z2)) -> or(mem(z0, z1), mem(z0, z2)) Tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) S tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) K tuples:none Defined Rule Symbols: or_2, mem_2 Defined Pair Symbols: MEM_2 Compound Symbols: c5_2 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: or(true, z0) -> true or(z0, true) -> true or(false, false) -> false mem(z0, nil) -> false mem(z0, set(z1)) -> =(z0, z1) mem(z0, union(z1, z2)) -> or(mem(z0, z1), mem(z0, z2)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) S tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: MEM_2 Compound Symbols: c5_2 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) We considered the (Usable) Rules:none And the Tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(MEM(x_1, x_2)) = x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(union(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) S tuples:none K tuples: MEM(z0, union(z1, z2)) -> c5(MEM(z0, z1), MEM(z0, z2)) Defined Rule Symbols:none Defined Pair Symbols: MEM_2 Compound Symbols: c5_2 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(x, nil) -> false mem(x, set(y)) -> ='(x, y) mem(x, union(y, z)) -> or(mem(x, y), mem(x, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: mem/0 set/0 ='/0 ='/1 ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(nil) -> false mem(set) -> =' mem(union(y, z)) -> or(mem(y), mem(z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: Innermost TRS: Rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(nil) -> false mem(set) -> =' mem(union(y, z)) -> or(mem(y), mem(z)) Types: or :: true:false:=' -> true:false:=' -> true:false:=' true :: true:false:=' false :: true:false:=' mem :: nil:set:union -> true:false:=' nil :: nil:set:union set :: nil:set:union =' :: true:false:=' union :: nil:set:union -> nil:set:union -> nil:set:union hole_true:false:='1_0 :: true:false:=' hole_nil:set:union2_0 :: nil:set:union gen_nil:set:union3_0 :: Nat -> nil:set:union ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: mem ---------------------------------------- (20) Obligation: Innermost TRS: Rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(nil) -> false mem(set) -> =' mem(union(y, z)) -> or(mem(y), mem(z)) Types: or :: true:false:=' -> true:false:=' -> true:false:=' true :: true:false:=' false :: true:false:=' mem :: nil:set:union -> true:false:=' nil :: nil:set:union set :: nil:set:union =' :: true:false:=' union :: nil:set:union -> nil:set:union -> nil:set:union hole_true:false:='1_0 :: true:false:=' hole_nil:set:union2_0 :: nil:set:union gen_nil:set:union3_0 :: Nat -> nil:set:union Generator Equations: gen_nil:set:union3_0(0) <=> nil gen_nil:set:union3_0(+(x, 1)) <=> union(nil, gen_nil:set:union3_0(x)) The following defined symbols remain to be analysed: mem ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mem(gen_nil:set:union3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Induction Base: mem(gen_nil:set:union3_0(0)) ->_R^Omega(1) false Induction Step: mem(gen_nil:set:union3_0(+(n5_0, 1))) ->_R^Omega(1) or(mem(nil), mem(gen_nil:set:union3_0(n5_0))) ->_R^Omega(1) or(false, mem(gen_nil:set:union3_0(n5_0))) ->_IH or(false, false) ->_R^Omega(1) false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: or(true, y) -> true or(x, true) -> true or(false, false) -> false mem(nil) -> false mem(set) -> =' mem(union(y, z)) -> or(mem(y), mem(z)) Types: or :: true:false:=' -> true:false:=' -> true:false:=' true :: true:false:=' false :: true:false:=' mem :: nil:set:union -> true:false:=' nil :: nil:set:union set :: nil:set:union =' :: true:false:=' union :: nil:set:union -> nil:set:union -> nil:set:union hole_true:false:='1_0 :: true:false:=' hole_nil:set:union2_0 :: nil:set:union gen_nil:set:union3_0 :: Nat -> nil:set:union Generator Equations: gen_nil:set:union3_0(0) <=> nil gen_nil:set:union3_0(+(x, 1)) <=> union(nil, gen_nil:set:union3_0(x)) The following defined symbols remain to be analysed: mem ---------------------------------------- (23) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (24) BOUNDS(n^1, INF)