/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 204 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 519 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev1(0, nil) -> 0 rev1(s(X), nil) -> s(X) rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev1(0', nil) -> 0' rev1(s(X), nil) -> s(X) rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: s/0 ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev1(0', nil) -> 0' rev1(s, nil) -> s rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Innermost TRS: Rules: rev1(0', nil) -> 0' rev1(s, nil) -> s rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) Types: rev1 :: 0':s -> nil:cons -> 0':s 0' :: 0':s nil :: nil:cons s :: 0':s cons :: 0':s -> nil:cons -> nil:cons rev :: nil:cons -> nil:cons rev2 :: 0':s -> nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: rev1, rev, rev2 They will be analysed ascendingly in the following order: rev1 < rev rev = rev2 ---------------------------------------- (8) Obligation: Innermost TRS: Rules: rev1(0', nil) -> 0' rev1(s, nil) -> s rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) Types: rev1 :: 0':s -> nil:cons -> 0':s 0' :: 0':s nil :: nil:cons s :: 0':s cons :: 0':s -> nil:cons -> nil:cons rev :: nil:cons -> nil:cons rev2 :: 0':s -> nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: rev1, rev, rev2 They will be analysed ascendingly in the following order: rev1 < rev rev = rev2 ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rev1(0', gen_nil:cons3_0(n5_0)) -> 0', rt in Omega(1 + n5_0) Induction Base: rev1(0', gen_nil:cons3_0(0)) ->_R^Omega(1) 0' Induction Step: rev1(0', gen_nil:cons3_0(+(n5_0, 1))) ->_R^Omega(1) rev1(0', gen_nil:cons3_0(n5_0)) ->_IH 0' We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: rev1(0', nil) -> 0' rev1(s, nil) -> s rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) Types: rev1 :: 0':s -> nil:cons -> 0':s 0' :: 0':s nil :: nil:cons s :: 0':s cons :: 0':s -> nil:cons -> nil:cons rev :: nil:cons -> nil:cons rev2 :: 0':s -> nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: rev1, rev, rev2 They will be analysed ascendingly in the following order: rev1 < rev rev = rev2 ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Innermost TRS: Rules: rev1(0', nil) -> 0' rev1(s, nil) -> s rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) Types: rev1 :: 0':s -> nil:cons -> 0':s 0' :: 0':s nil :: nil:cons s :: 0':s cons :: 0':s -> nil:cons -> nil:cons rev :: nil:cons -> nil:cons rev2 :: 0':s -> nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Lemmas: rev1(0', gen_nil:cons3_0(n5_0)) -> 0', rt in Omega(1 + n5_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: rev2, rev They will be analysed ascendingly in the following order: rev = rev2 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rev2(0', gen_nil:cons3_0(+(1, n203_0))) -> *4_0, rt in Omega(n203_0) Induction Base: rev2(0', gen_nil:cons3_0(+(1, 0))) Induction Step: rev2(0', gen_nil:cons3_0(+(1, +(n203_0, 1)))) ->_R^Omega(1) rev(cons(0', rev(rev2(0', gen_nil:cons3_0(+(1, n203_0)))))) ->_IH rev(cons(0', rev(*4_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: Innermost TRS: Rules: rev1(0', nil) -> 0' rev1(s, nil) -> s rev1(X, cons(Y, L)) -> rev1(Y, L) rev(nil) -> nil rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) rev2(X, nil) -> nil rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) Types: rev1 :: 0':s -> nil:cons -> 0':s 0' :: 0':s nil :: nil:cons s :: 0':s cons :: 0':s -> nil:cons -> nil:cons rev :: nil:cons -> nil:cons rev2 :: 0':s -> nil:cons -> nil:cons hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Lemmas: rev1(0', gen_nil:cons3_0(n5_0)) -> 0', rt in Omega(1 + n5_0) rev2(0', gen_nil:cons3_0(+(1, n203_0))) -> *4_0, rt in Omega(n203_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(0', gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: rev They will be analysed ascendingly in the following order: rev = rev2