/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 10 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 46 ms] (8) CdtProblem (9) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (10) BOUNDS(1, 1) (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTRS (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) typed CpxTrs (15) OrderProof [LOWER BOUND(ID), 0 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 1070 ms] (18) proven lower bound (19) LowerBoundPropagationProof [FINISHED, 0 ms] (20) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: dx(X) -> one dx(a) -> zero dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA)) dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA))) dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two)))) dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: dx(z0) -> one dx(a) -> zero dx(plus(z0, z1)) -> plus(dx(z0), dx(z1)) dx(times(z0, z1)) -> plus(times(z1, dx(z0)), times(z0, dx(z1))) dx(minus(z0, z1)) -> minus(dx(z0), dx(z1)) dx(neg(z0)) -> neg(dx(z0)) dx(div(z0, z1)) -> minus(div(dx(z0), z1), times(z0, div(dx(z1), exp(z1, two)))) dx(ln(z0)) -> div(dx(z0), z0) dx(exp(z0, z1)) -> plus(times(z1, times(exp(z0, minus(z1, one)), dx(z0))), times(exp(z0, z1), times(ln(z0), dx(z1)))) Tuples: DX(z0) -> c DX(a) -> c1 DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) S tuples: DX(z0) -> c DX(a) -> c1 DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) K tuples:none Defined Rule Symbols: dx_1 Defined Pair Symbols: DX_1 Compound Symbols: c, c1, c2_2, c3_2, c4_2, c5_1, c6_2, c7_1, c8_2 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: DX(z0) -> c DX(a) -> c1 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: dx(z0) -> one dx(a) -> zero dx(plus(z0, z1)) -> plus(dx(z0), dx(z1)) dx(times(z0, z1)) -> plus(times(z1, dx(z0)), times(z0, dx(z1))) dx(minus(z0, z1)) -> minus(dx(z0), dx(z1)) dx(neg(z0)) -> neg(dx(z0)) dx(div(z0, z1)) -> minus(div(dx(z0), z1), times(z0, div(dx(z1), exp(z1, two)))) dx(ln(z0)) -> div(dx(z0), z0) dx(exp(z0, z1)) -> plus(times(z1, times(exp(z0, minus(z1, one)), dx(z0))), times(exp(z0, z1), times(ln(z0), dx(z1)))) Tuples: DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) S tuples: DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) K tuples:none Defined Rule Symbols: dx_1 Defined Pair Symbols: DX_1 Compound Symbols: c2_2, c3_2, c4_2, c5_1, c6_2, c7_1, c8_2 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: dx(z0) -> one dx(a) -> zero dx(plus(z0, z1)) -> plus(dx(z0), dx(z1)) dx(times(z0, z1)) -> plus(times(z1, dx(z0)), times(z0, dx(z1))) dx(minus(z0, z1)) -> minus(dx(z0), dx(z1)) dx(neg(z0)) -> neg(dx(z0)) dx(div(z0, z1)) -> minus(div(dx(z0), z1), times(z0, div(dx(z1), exp(z1, two)))) dx(ln(z0)) -> div(dx(z0), z0) dx(exp(z0, z1)) -> plus(times(z1, times(exp(z0, minus(z1, one)), dx(z0))), times(exp(z0, z1), times(ln(z0), dx(z1)))) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) S tuples: DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: DX_1 Compound Symbols: c2_2, c3_2, c4_2, c5_1, c6_2, c7_1, c8_2 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) We considered the (Usable) Rules:none And the Tuples: DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(DX(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1)) = x_1 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(div(x_1, x_2)) = [1] + x_1 + x_2 POL(exp(x_1, x_2)) = [1] + x_1 + x_2 POL(ln(x_1)) = [1] + x_1 POL(minus(x_1, x_2)) = [1] + x_1 + x_2 POL(neg(x_1)) = [1] + x_1 POL(plus(x_1, x_2)) = [1] + x_1 + x_2 POL(times(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) S tuples:none K tuples: DX(plus(z0, z1)) -> c2(DX(z0), DX(z1)) DX(times(z0, z1)) -> c3(DX(z0), DX(z1)) DX(minus(z0, z1)) -> c4(DX(z0), DX(z1)) DX(neg(z0)) -> c5(DX(z0)) DX(div(z0, z1)) -> c6(DX(z0), DX(z1)) DX(ln(z0)) -> c7(DX(z0)) DX(exp(z0, z1)) -> c8(DX(z0), DX(z1)) Defined Rule Symbols:none Defined Pair Symbols: DX_1 Compound Symbols: c2_2, c3_2, c4_2, c5_1, c6_2, c7_1, c8_2 ---------------------------------------- (9) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (10) BOUNDS(1, 1) ---------------------------------------- (11) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: dx(X) -> one dx(a) -> zero dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA)) dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA))) dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two)))) dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Innermost TRS: Rules: dx(X) -> one dx(a) -> zero dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA)) dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA))) dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two)))) dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA)))) Types: dx :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln one :: one:a:zero:plus:times:minus:neg:div:two:exp:ln a :: one:a:zero:plus:times:minus:neg:div:two:exp:ln zero :: one:a:zero:plus:times:minus:neg:div:two:exp:ln plus :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln times :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln minus :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln neg :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln div :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln exp :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln two :: one:a:zero:plus:times:minus:neg:div:two:exp:ln ln :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln hole_one:a:zero:plus:times:minus:neg:div:two:exp:ln1_0 :: one:a:zero:plus:times:minus:neg:div:two:exp:ln gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0 :: Nat -> one:a:zero:plus:times:minus:neg:div:two:exp:ln ---------------------------------------- (15) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: dx ---------------------------------------- (16) Obligation: Innermost TRS: Rules: dx(X) -> one dx(a) -> zero dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA)) dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA))) dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two)))) dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA)))) Types: dx :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln one :: one:a:zero:plus:times:minus:neg:div:two:exp:ln a :: one:a:zero:plus:times:minus:neg:div:two:exp:ln zero :: one:a:zero:plus:times:minus:neg:div:two:exp:ln plus :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln times :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln minus :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln neg :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln div :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln exp :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln two :: one:a:zero:plus:times:minus:neg:div:two:exp:ln ln :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln hole_one:a:zero:plus:times:minus:neg:div:two:exp:ln1_0 :: one:a:zero:plus:times:minus:neg:div:two:exp:ln gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0 :: Nat -> one:a:zero:plus:times:minus:neg:div:two:exp:ln Generator Equations: gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(0) <=> a gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(+(x, 1)) <=> plus(a, gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(x)) The following defined symbols remain to be analysed: dx ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: dx(gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(n4_0)) -> *3_0, rt in Omega(n4_0) Induction Base: dx(gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(0)) Induction Step: dx(gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(+(n4_0, 1))) ->_R^Omega(1) plus(dx(a), dx(gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(n4_0))) ->_R^Omega(1) plus(one, dx(gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(n4_0))) ->_IH plus(one, *3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: dx(X) -> one dx(a) -> zero dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA)) dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA))) dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two)))) dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA)))) Types: dx :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln one :: one:a:zero:plus:times:minus:neg:div:two:exp:ln a :: one:a:zero:plus:times:minus:neg:div:two:exp:ln zero :: one:a:zero:plus:times:minus:neg:div:two:exp:ln plus :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln times :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln minus :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln neg :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln div :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln exp :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln two :: one:a:zero:plus:times:minus:neg:div:two:exp:ln ln :: one:a:zero:plus:times:minus:neg:div:two:exp:ln -> one:a:zero:plus:times:minus:neg:div:two:exp:ln hole_one:a:zero:plus:times:minus:neg:div:two:exp:ln1_0 :: one:a:zero:plus:times:minus:neg:div:two:exp:ln gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0 :: Nat -> one:a:zero:plus:times:minus:neg:div:two:exp:ln Generator Equations: gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(0) <=> a gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(+(x, 1)) <=> plus(a, gen_one:a:zero:plus:times:minus:neg:div:two:exp:ln2_0(x)) The following defined symbols remain to be analysed: dx ---------------------------------------- (19) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (20) BOUNDS(n^1, INF)