/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 443 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 3. The certificate found is represented by the following graph. "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] {(1,2,[f_1|0, e_1|0, a|1, c_1|1, d_1|1, b|1, g_1|1, e_1|1, a|2, b|2, b|3]), (1,3,[f_1|1]), (1,5,[f_1|1]), (1,7,[f_1|1]), (1,9,[f_1|2]), (2,2,[a|0, c_1|0, d_1|0, b|0, g_1|0]), (3,4,[c_1|1]), (4,2,[a|1]), (5,6,[d_1|1]), (6,2,[a|1]), (7,8,[d_1|1]), (8,2,[b|1]), (9,10,[d_1|2]), (10,2,[b|2])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) Types: f :: a:c:b:d -> a:c:b:d a :: a:c:b:d c :: a:c:b:d -> a:c:b:d d :: a:c:b:d -> a:c:b:d b :: a:c:b:d e :: g -> e g :: g -> g hole_a:c:b:d1_0 :: a:c:b:d hole_e2_0 :: e hole_g3_0 :: g gen_a:c:b:d4_0 :: Nat -> a:c:b:d gen_g5_0 :: Nat -> g ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, e ---------------------------------------- (10) Obligation: Innermost TRS: Rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) Types: f :: a:c:b:d -> a:c:b:d a :: a:c:b:d c :: a:c:b:d -> a:c:b:d d :: a:c:b:d -> a:c:b:d b :: a:c:b:d e :: g -> e g :: g -> g hole_a:c:b:d1_0 :: a:c:b:d hole_e2_0 :: e hole_g3_0 :: g gen_a:c:b:d4_0 :: Nat -> a:c:b:d gen_g5_0 :: Nat -> g Generator Equations: gen_a:c:b:d4_0(0) <=> b gen_a:c:b:d4_0(+(x, 1)) <=> c(gen_a:c:b:d4_0(x)) gen_g5_0(0) <=> hole_g3_0 gen_g5_0(+(x, 1)) <=> g(gen_g5_0(x)) The following defined symbols remain to be analysed: f, e ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: e(gen_g5_0(+(1, n43_0))) -> *6_0, rt in Omega(n43_0) Induction Base: e(gen_g5_0(+(1, 0))) Induction Step: e(gen_g5_0(+(1, +(n43_0, 1)))) ->_R^Omega(1) e(gen_g5_0(+(1, n43_0))) ->_IH *6_0 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(a) -> f(c(a)) f(c(X)) -> X f(c(a)) -> f(d(b)) f(a) -> f(d(a)) f(d(X)) -> X f(c(b)) -> f(d(a)) e(g(X)) -> e(X) Types: f :: a:c:b:d -> a:c:b:d a :: a:c:b:d c :: a:c:b:d -> a:c:b:d d :: a:c:b:d -> a:c:b:d b :: a:c:b:d e :: g -> e g :: g -> g hole_a:c:b:d1_0 :: a:c:b:d hole_e2_0 :: e hole_g3_0 :: g gen_a:c:b:d4_0 :: Nat -> a:c:b:d gen_g5_0 :: Nat -> g Generator Equations: gen_a:c:b:d4_0(0) <=> b gen_a:c:b:d4_0(+(x, 1)) <=> c(gen_a:c:b:d4_0(x)) gen_g5_0(0) <=> hole_g3_0 gen_g5_0(+(x, 1)) <=> g(gen_g5_0(x)) The following defined symbols remain to be analysed: e ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)