/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 8 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 138 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 2 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 28 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 255 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 202 ms] (16) CdtProblem (17) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (18) BOUNDS(1, 1) (19) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxTRS (21) SlicingProof [LOWER BOUND(ID), 0 ms] (22) CpxTRS (23) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (24) typed CpxTrs (25) OrderProof [LOWER BOUND(ID), 0 ms] (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 470 ms] (28) BEST (29) proven lower bound (30) LowerBoundPropagationProof [FINISHED, 0 ms] (31) BOUNDS(n^1, INF) (32) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: din(der(plus(X, Y))) -> u21(din(der(X)), X, Y) u21(dout(DX), X, Y) -> u22(din(der(Y)), X, Y, DX) u22(dout(DY), X, Y, DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X)), X) u41(dout(DX), X) -> u42(din(der(DX)), X, DX) u42(dout(DDX), X, DX) -> dout(DDX) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) din(der(der(z0))) -> u41(din(der(z0)), z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) u42(dout(z0), z1, z2) -> dout(z0) Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(U22(din(der(z2)), z1, z2, z0), DIN(der(z2))) U22(dout(z0), z1, z2, z3) -> c4 U31(dout(z0), z1, z2) -> c5(U32(din(der(z2)), z1, z2, z0), DIN(der(z2))) U32(dout(z0), z1, z2, z3) -> c6 U41(dout(z0), z1) -> c7(U42(din(der(z0)), z1, z0), DIN(der(z0))) U42(dout(z0), z1, z2) -> c8 S tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(U22(din(der(z2)), z1, z2, z0), DIN(der(z2))) U22(dout(z0), z1, z2, z3) -> c4 U31(dout(z0), z1, z2) -> c5(U32(din(der(z2)), z1, z2, z0), DIN(der(z2))) U32(dout(z0), z1, z2, z3) -> c6 U41(dout(z0), z1) -> c7(U42(din(der(z0)), z1, z0), DIN(der(z0))) U42(dout(z0), z1, z2) -> c8 K tuples:none Defined Rule Symbols: din_1, u21_3, u22_4, u31_3, u32_4, u41_2, u42_3 Defined Pair Symbols: DIN_1, U21_3, U22_4, U31_3, U32_4, U41_2, U42_3 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4, c5_2, c6, c7_2, c8 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing nodes: U42(dout(z0), z1, z2) -> c8 U32(dout(z0), z1, z2, z3) -> c6 U22(dout(z0), z1, z2, z3) -> c4 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) din(der(der(z0))) -> u41(din(der(z0)), z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) u42(dout(z0), z1, z2) -> dout(z0) Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(U22(din(der(z2)), z1, z2, z0), DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(U32(din(der(z2)), z1, z2, z0), DIN(der(z2))) U41(dout(z0), z1) -> c7(U42(din(der(z0)), z1, z0), DIN(der(z0))) S tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(U22(din(der(z2)), z1, z2, z0), DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(U32(din(der(z2)), z1, z2, z0), DIN(der(z2))) U41(dout(z0), z1) -> c7(U42(din(der(z0)), z1, z0), DIN(der(z0))) K tuples:none Defined Rule Symbols: din_1, u21_3, u22_4, u31_3, u32_4, u41_2, u42_3 Defined Pair Symbols: DIN_1, U21_3, U31_3, U41_2 Compound Symbols: c_2, c1_2, c2_2, c3_2, c5_2, c7_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) din(der(der(z0))) -> u41(din(der(z0)), z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) u42(dout(z0), z1, z2) -> dout(z0) Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) S tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) K tuples:none Defined Rule Symbols: din_1, u21_3, u22_4, u31_3, u32_4, u41_2, u42_3 Defined Pair Symbols: DIN_1, U21_3, U31_3, U41_2 Compound Symbols: c_2, c1_2, c2_2, c3_1, c5_1, c7_1 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) We considered the (Usable) Rules: u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) u42(dout(z0), z1, z2) -> dout(z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) din(der(der(z0))) -> u41(din(der(z0)), z0) And the Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(DIN(x_1)) = [3]x_1 POL(U21(x_1, x_2, x_3)) = 0 POL(U31(x_1, x_2, x_3)) = [2]x_1 POL(U41(x_1, x_2)) = 0 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(der(x_1)) = 0 POL(din(x_1)) = 0 POL(dout(x_1)) = [1] + x_1 POL(plus(x_1, x_2)) = x_2 POL(times(x_1, x_2)) = [1] POL(u21(x_1, x_2, x_3)) = 0 POL(u22(x_1, x_2, x_3, x_4)) = x_1 POL(u31(x_1, x_2, x_3)) = x_1 POL(u32(x_1, x_2, x_3, x_4)) = [2]x_1 + x_4 POL(u41(x_1, x_2)) = 0 POL(u42(x_1, x_2, x_3)) = x_1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) din(der(der(z0))) -> u41(din(der(z0)), z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) u42(dout(z0), z1, z2) -> dout(z0) Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) S tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) K tuples: U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) Defined Rule Symbols: din_1, u21_3, u22_4, u31_3, u32_4, u41_2, u42_3 Defined Pair Symbols: DIN_1, U21_3, U31_3, U41_2 Compound Symbols: c_2, c1_2, c2_2, c3_1, c5_1, c7_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) We considered the (Usable) Rules: u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) u42(dout(z0), z1, z2) -> dout(z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) din(der(der(z0))) -> u41(din(der(z0)), z0) And the Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(DIN(x_1)) = x_1 POL(U21(x_1, x_2, x_3)) = x_1 POL(U31(x_1, x_2, x_3)) = 0 POL(U41(x_1, x_2)) = 0 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(der(x_1)) = 0 POL(din(x_1)) = 0 POL(dout(x_1)) = [1] POL(plus(x_1, x_2)) = [1] POL(times(x_1, x_2)) = x_2 POL(u21(x_1, x_2, x_3)) = 0 POL(u22(x_1, x_2, x_3, x_4)) = x_1 POL(u31(x_1, x_2, x_3)) = x_1 POL(u32(x_1, x_2, x_3, x_4)) = [1] POL(u41(x_1, x_2)) = x_1 POL(u42(x_1, x_2, x_3)) = [1] ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) din(der(der(z0))) -> u41(din(der(z0)), z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) u42(dout(z0), z1, z2) -> dout(z0) Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) S tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U41(dout(z0), z1) -> c7(DIN(der(z0))) K tuples: U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) Defined Rule Symbols: din_1, u21_3, u22_4, u31_3, u32_4, u41_2, u42_3 Defined Pair Symbols: DIN_1, U21_3, U31_3, U41_2 Compound Symbols: c_2, c1_2, c2_2, c3_1, c5_1, c7_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. U41(dout(z0), z1) -> c7(DIN(der(z0))) We considered the (Usable) Rules: u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) u42(dout(z0), z1, z2) -> dout(z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) din(der(der(z0))) -> u41(din(der(z0)), z0) And the Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(DIN(x_1)) = x_1 POL(U21(x_1, x_2, x_3)) = 0 POL(U31(x_1, x_2, x_3)) = x_1 POL(U41(x_1, x_2)) = x_1 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(der(x_1)) = 0 POL(din(x_1)) = 0 POL(dout(x_1)) = [1] POL(plus(x_1, x_2)) = [1] POL(times(x_1, x_2)) = x_1 + x_2 POL(u21(x_1, x_2, x_3)) = 0 POL(u22(x_1, x_2, x_3, x_4)) = x_1 POL(u31(x_1, x_2, x_3)) = x_1 POL(u32(x_1, x_2, x_3, x_4)) = [1] POL(u41(x_1, x_2)) = 0 POL(u42(x_1, x_2, x_3)) = x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) din(der(der(z0))) -> u41(din(der(z0)), z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) u42(dout(z0), z1, z2) -> dout(z0) Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) S tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) K tuples: U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) Defined Rule Symbols: din_1, u21_3, u22_4, u31_3, u32_4, u41_2, u42_3 Defined Pair Symbols: DIN_1, U21_3, U31_3, U41_2 Compound Symbols: c_2, c1_2, c2_2, c3_1, c5_1, c7_1 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) We considered the (Usable) Rules: u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) u42(dout(z0), z1, z2) -> dout(z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) din(der(der(z0))) -> u41(din(der(z0)), z0) And the Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(DIN(x_1)) = [2]x_1 + x_1^2 POL(U21(x_1, x_2, x_3)) = x_3^2 + x_2*x_3 + x_1*x_3 POL(U31(x_1, x_2, x_3)) = [1] + [2]x_2 + [2]x_3 + x_3^2 + [2]x_2*x_3 POL(U41(x_1, x_2)) = x_1^2 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(der(x_1)) = x_1 POL(din(x_1)) = 0 POL(dout(x_1)) = [2] + x_1 POL(plus(x_1, x_2)) = [2] + x_1 + x_2 POL(times(x_1, x_2)) = [1] + x_1 + x_2 POL(u21(x_1, x_2, x_3)) = [2]x_1 + x_1^2 POL(u22(x_1, x_2, x_3, x_4)) = x_1 + x_4^2 + [2]x_1*x_4 + [2]x_1^2 POL(u31(x_1, x_2, x_3)) = x_1 + x_1*x_3 + x_1^2 + [2]x_1*x_2 POL(u32(x_1, x_2, x_3, x_4)) = x_2 + x_3 + [2]x_4 + x_4^2 + [2]x_2*x_4 + [2]x_1^2 POL(u41(x_1, x_2)) = 0 POL(u42(x_1, x_2, x_3)) = [2]x_1 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) din(der(der(z0))) -> u41(din(der(z0)), z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) u42(dout(z0), z1, z2) -> dout(z0) Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) S tuples: DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) K tuples: U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) Defined Rule Symbols: din_1, u21_3, u22_4, u31_3, u32_4, u41_2, u42_3 Defined Pair Symbols: DIN_1, U21_3, U31_3, U41_2 Compound Symbols: c_2, c1_2, c2_2, c3_1, c5_1, c7_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) We considered the (Usable) Rules: u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) u42(dout(z0), z1, z2) -> dout(z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) din(der(der(z0))) -> u41(din(der(z0)), z0) And the Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(DIN(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(U21(x_1, x_2, x_3)) = [1] + [2]x_3 + [2]x_3^2 + x_2*x_3 + [2]x_1*x_3 + x_1^2 POL(U31(x_1, x_2, x_3)) = [2] + [2]x_1 + [2]x_2 + [2]x_3 + [2]x_3^2 + [2]x_2*x_3 + [2]x_1*x_3 POL(U41(x_1, x_2)) = [2]x_1 + [2]x_1^2 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(der(x_1)) = [1] + x_1 POL(din(x_1)) = 0 POL(dout(x_1)) = [2] + x_1 POL(plus(x_1, x_2)) = [2] + x_1 + x_2 POL(times(x_1, x_2)) = [2] + x_1 + x_2 POL(u21(x_1, x_2, x_3)) = x_1 + x_1*x_3 POL(u22(x_1, x_2, x_3, x_4)) = [2]x_1*x_4 + [2]x_1^2 POL(u31(x_1, x_2, x_3)) = 0 POL(u32(x_1, x_2, x_3, x_4)) = [2]x_1*x_4 + [2]x_1^2 + [2]x_1*x_2 + x_1*x_3 POL(u41(x_1, x_2)) = x_1 + x_1^2 POL(u42(x_1, x_2, x_3)) = [2]x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: din(der(plus(z0, z1))) -> u21(din(der(z0)), z0, z1) din(der(times(z0, z1))) -> u31(din(der(z0)), z0, z1) din(der(der(z0))) -> u41(din(der(z0)), z0) u21(dout(z0), z1, z2) -> u22(din(der(z2)), z1, z2, z0) u22(dout(z0), z1, z2, z3) -> dout(plus(z3, z0)) u31(dout(z0), z1, z2) -> u32(din(der(z2)), z1, z2, z0) u32(dout(z0), z1, z2, z3) -> dout(plus(times(z1, z0), times(z2, z3))) u41(dout(z0), z1) -> u42(din(der(z0)), z1, z0) u42(dout(z0), z1, z2) -> dout(z0) Tuples: DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) S tuples:none K tuples: U31(dout(z0), z1, z2) -> c5(DIN(der(z2))) U21(dout(z0), z1, z2) -> c3(DIN(der(z2))) U41(dout(z0), z1) -> c7(DIN(der(z0))) DIN(der(plus(z0, z1))) -> c(U21(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(times(z0, z1))) -> c1(U31(din(der(z0)), z0, z1), DIN(der(z0))) DIN(der(der(z0))) -> c2(U41(din(der(z0)), z0), DIN(der(z0))) Defined Rule Symbols: din_1, u21_3, u22_4, u31_3, u32_4, u41_2, u42_3 Defined Pair Symbols: DIN_1, U21_3, U31_3, U41_2 Compound Symbols: c_2, c1_2, c2_2, c3_1, c5_1, c7_1 ---------------------------------------- (17) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (18) BOUNDS(1, 1) ---------------------------------------- (19) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (20) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: din(der(plus(X, Y))) -> u21(din(der(X)), X, Y) u21(dout(DX), X, Y) -> u22(din(der(Y)), X, Y, DX) u22(dout(DY), X, Y, DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X)), X) u41(dout(DX), X) -> u42(din(der(DX)), X, DX) u42(dout(DDX), X, DX) -> dout(DDX) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (21) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: u21/1 u22/1 u22/2 u41/1 u42/1 u42/2 ---------------------------------------- (22) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (23) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (24) Obligation: Innermost TRS: Rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) Types: din :: plus:der:times -> dout der :: plus:der:times -> plus:der:times plus :: plus:der:times -> plus:der:times -> plus:der:times u21 :: dout -> plus:der:times -> dout dout :: plus:der:times -> dout u22 :: dout -> plus:der:times -> dout times :: plus:der:times -> plus:der:times -> plus:der:times u31 :: dout -> plus:der:times -> plus:der:times -> dout u32 :: dout -> plus:der:times -> plus:der:times -> plus:der:times -> dout u41 :: dout -> dout u42 :: dout -> dout hole_dout1_0 :: dout hole_plus:der:times2_0 :: plus:der:times gen_plus:der:times3_0 :: Nat -> plus:der:times ---------------------------------------- (25) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: din, u41 They will be analysed ascendingly in the following order: din = u41 ---------------------------------------- (26) Obligation: Innermost TRS: Rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) Types: din :: plus:der:times -> dout der :: plus:der:times -> plus:der:times plus :: plus:der:times -> plus:der:times -> plus:der:times u21 :: dout -> plus:der:times -> dout dout :: plus:der:times -> dout u22 :: dout -> plus:der:times -> dout times :: plus:der:times -> plus:der:times -> plus:der:times u31 :: dout -> plus:der:times -> plus:der:times -> dout u32 :: dout -> plus:der:times -> plus:der:times -> plus:der:times -> dout u41 :: dout -> dout u42 :: dout -> dout hole_dout1_0 :: dout hole_plus:der:times2_0 :: plus:der:times gen_plus:der:times3_0 :: Nat -> plus:der:times Generator Equations: gen_plus:der:times3_0(0) <=> hole_plus:der:times2_0 gen_plus:der:times3_0(+(x, 1)) <=> der(gen_plus:der:times3_0(x)) The following defined symbols remain to be analysed: u41, din They will be analysed ascendingly in the following order: din = u41 ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: din(gen_plus:der:times3_0(+(2, n29_0))) -> *4_0, rt in Omega(n29_0) Induction Base: din(gen_plus:der:times3_0(+(2, 0))) Induction Step: din(gen_plus:der:times3_0(+(2, +(n29_0, 1)))) ->_R^Omega(1) u41(din(der(gen_plus:der:times3_0(+(1, n29_0))))) ->_IH u41(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Complex Obligation (BEST) ---------------------------------------- (29) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) Types: din :: plus:der:times -> dout der :: plus:der:times -> plus:der:times plus :: plus:der:times -> plus:der:times -> plus:der:times u21 :: dout -> plus:der:times -> dout dout :: plus:der:times -> dout u22 :: dout -> plus:der:times -> dout times :: plus:der:times -> plus:der:times -> plus:der:times u31 :: dout -> plus:der:times -> plus:der:times -> dout u32 :: dout -> plus:der:times -> plus:der:times -> plus:der:times -> dout u41 :: dout -> dout u42 :: dout -> dout hole_dout1_0 :: dout hole_plus:der:times2_0 :: plus:der:times gen_plus:der:times3_0 :: Nat -> plus:der:times Generator Equations: gen_plus:der:times3_0(0) <=> hole_plus:der:times2_0 gen_plus:der:times3_0(+(x, 1)) <=> der(gen_plus:der:times3_0(x)) The following defined symbols remain to be analysed: din They will be analysed ascendingly in the following order: din = u41 ---------------------------------------- (30) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (31) BOUNDS(n^1, INF) ---------------------------------------- (32) Obligation: Innermost TRS: Rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) Types: din :: plus:der:times -> dout der :: plus:der:times -> plus:der:times plus :: plus:der:times -> plus:der:times -> plus:der:times u21 :: dout -> plus:der:times -> dout dout :: plus:der:times -> dout u22 :: dout -> plus:der:times -> dout times :: plus:der:times -> plus:der:times -> plus:der:times u31 :: dout -> plus:der:times -> plus:der:times -> dout u32 :: dout -> plus:der:times -> plus:der:times -> plus:der:times -> dout u41 :: dout -> dout u42 :: dout -> dout hole_dout1_0 :: dout hole_plus:der:times2_0 :: plus:der:times gen_plus:der:times3_0 :: Nat -> plus:der:times Lemmas: din(gen_plus:der:times3_0(+(2, n29_0))) -> *4_0, rt in Omega(n29_0) Generator Equations: gen_plus:der:times3_0(0) <=> hole_plus:der:times2_0 gen_plus:der:times3_0(+(x, 1)) <=> der(gen_plus:der:times3_0(x)) The following defined symbols remain to be analysed: u41 They will be analysed ascendingly in the following order: din = u41