/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 265 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 58 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 26 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 38 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 38 ms] (20) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0) -> x -(0, s(y)) -> 0 -(s(x), s(y)) -> -(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0 length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+'(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0' length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+'(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0' length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s ++ :: nil:: -> nil:: -> nil:: nil :: nil:: : :: 0':s -> nil:: -> nil:: sum :: nil:: -> nil:: - :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s length :: nil:: -> 0':s hd :: nil:: -> 0':s avg :: nil:: -> 0':s hole_0':s1_0 :: 0':s hole_nil::2_0 :: nil:: gen_0':s3_0 :: Nat -> 0':s gen_nil::4_0 :: Nat -> nil:: ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', ++, sum, -, quot, length They will be analysed ascendingly in the following order: +' < sum ++ < sum - < quot ---------------------------------------- (6) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+'(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0' length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s ++ :: nil:: -> nil:: -> nil:: nil :: nil:: : :: 0':s -> nil:: -> nil:: sum :: nil:: -> nil:: - :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s length :: nil:: -> 0':s hd :: nil:: -> 0':s avg :: nil:: -> 0':s hole_0':s1_0 :: 0':s hole_nil::2_0 :: nil:: gen_0':s3_0 :: Nat -> 0':s gen_nil::4_0 :: Nat -> nil:: Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil::4_0(0) <=> nil gen_nil::4_0(+(x, 1)) <=> :(0', gen_nil::4_0(x)) The following defined symbols remain to be analysed: +', ++, sum, -, quot, length They will be analysed ascendingly in the following order: +' < sum ++ < sum - < quot ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n6_0, b)), rt in Omega(1 + n6_0) Induction Base: +'(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: +'(gen_0':s3_0(+(n6_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(+'(gen_0':s3_0(n6_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c7_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+'(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0' length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s ++ :: nil:: -> nil:: -> nil:: nil :: nil:: : :: 0':s -> nil:: -> nil:: sum :: nil:: -> nil:: - :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s length :: nil:: -> 0':s hd :: nil:: -> 0':s avg :: nil:: -> 0':s hole_0':s1_0 :: 0':s hole_nil::2_0 :: nil:: gen_0':s3_0 :: Nat -> 0':s gen_nil::4_0 :: Nat -> nil:: Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil::4_0(0) <=> nil gen_nil::4_0(+(x, 1)) <=> :(0', gen_nil::4_0(x)) The following defined symbols remain to be analysed: +', ++, sum, -, quot, length They will be analysed ascendingly in the following order: +' < sum ++ < sum - < quot ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+'(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0' length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s ++ :: nil:: -> nil:: -> nil:: nil :: nil:: : :: 0':s -> nil:: -> nil:: sum :: nil:: -> nil:: - :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s length :: nil:: -> 0':s hd :: nil:: -> 0':s avg :: nil:: -> 0':s hole_0':s1_0 :: 0':s hole_nil::2_0 :: nil:: gen_0':s3_0 :: Nat -> 0':s gen_nil::4_0 :: Nat -> nil:: Lemmas: +'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n6_0, b)), rt in Omega(1 + n6_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil::4_0(0) <=> nil gen_nil::4_0(+(x, 1)) <=> :(0', gen_nil::4_0(x)) The following defined symbols remain to be analysed: ++, sum, -, quot, length They will be analysed ascendingly in the following order: ++ < sum - < quot ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) -> gen_nil::4_0(+(n723_0, b)), rt in Omega(1 + n723_0) Induction Base: ++(gen_nil::4_0(0), gen_nil::4_0(b)) ->_R^Omega(1) gen_nil::4_0(b) Induction Step: ++(gen_nil::4_0(+(n723_0, 1)), gen_nil::4_0(b)) ->_R^Omega(1) :(0', ++(gen_nil::4_0(n723_0), gen_nil::4_0(b))) ->_IH :(0', gen_nil::4_0(+(b, c724_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+'(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0' length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s ++ :: nil:: -> nil:: -> nil:: nil :: nil:: : :: 0':s -> nil:: -> nil:: sum :: nil:: -> nil:: - :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s length :: nil:: -> 0':s hd :: nil:: -> 0':s avg :: nil:: -> 0':s hole_0':s1_0 :: 0':s hole_nil::2_0 :: nil:: gen_0':s3_0 :: Nat -> 0':s gen_nil::4_0 :: Nat -> nil:: Lemmas: +'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n6_0, b)), rt in Omega(1 + n6_0) ++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) -> gen_nil::4_0(+(n723_0, b)), rt in Omega(1 + n723_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil::4_0(0) <=> nil gen_nil::4_0(+(x, 1)) <=> :(0', gen_nil::4_0(x)) The following defined symbols remain to be analysed: sum, -, quot, length They will be analysed ascendingly in the following order: - < quot ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_nil::4_0(+(1, n1576_0))) -> gen_nil::4_0(1), rt in Omega(1 + n1576_0) Induction Base: sum(gen_nil::4_0(+(1, 0))) ->_R^Omega(1) :(0', nil) Induction Step: sum(gen_nil::4_0(+(1, +(n1576_0, 1)))) ->_R^Omega(1) sum(:(+'(0', 0'), gen_nil::4_0(n1576_0))) ->_L^Omega(1) sum(:(gen_0':s3_0(+(0, 0)), gen_nil::4_0(n1576_0))) ->_IH gen_nil::4_0(1) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+'(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0' length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s ++ :: nil:: -> nil:: -> nil:: nil :: nil:: : :: 0':s -> nil:: -> nil:: sum :: nil:: -> nil:: - :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s length :: nil:: -> 0':s hd :: nil:: -> 0':s avg :: nil:: -> 0':s hole_0':s1_0 :: 0':s hole_nil::2_0 :: nil:: gen_0':s3_0 :: Nat -> 0':s gen_nil::4_0 :: Nat -> nil:: Lemmas: +'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n6_0, b)), rt in Omega(1 + n6_0) ++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) -> gen_nil::4_0(+(n723_0, b)), rt in Omega(1 + n723_0) sum(gen_nil::4_0(+(1, n1576_0))) -> gen_nil::4_0(1), rt in Omega(1 + n1576_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil::4_0(0) <=> nil gen_nil::4_0(+(x, 1)) <=> :(0', gen_nil::4_0(x)) The following defined symbols remain to be analysed: -, quot, length They will be analysed ascendingly in the following order: - < quot ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s3_0(n1997_0), gen_0':s3_0(n1997_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1997_0) Induction Base: -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: -(gen_0':s3_0(+(n1997_0, 1)), gen_0':s3_0(+(n1997_0, 1))) ->_R^Omega(1) -(gen_0':s3_0(n1997_0), gen_0':s3_0(n1997_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) ++(nil, ys) -> ys ++(:(x, xs), ys) -> :(x, ++(xs, ys)) sum(:(x, nil)) -> :(x, nil) sum(:(x, :(y, xs))) -> sum(:(+'(x, y), xs)) sum(++(xs, :(x, :(y, ys)))) -> sum(++(xs, sum(:(x, :(y, ys))))) -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) quot(0', s(y)) -> 0' quot(s(x), s(y)) -> s(quot(-(x, y), s(y))) length(nil) -> 0' length(:(x, xs)) -> s(length(xs)) hd(:(x, xs)) -> x avg(xs) -> quot(hd(sum(xs)), length(xs)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s ++ :: nil:: -> nil:: -> nil:: nil :: nil:: : :: 0':s -> nil:: -> nil:: sum :: nil:: -> nil:: - :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s length :: nil:: -> 0':s hd :: nil:: -> 0':s avg :: nil:: -> 0':s hole_0':s1_0 :: 0':s hole_nil::2_0 :: nil:: gen_0':s3_0 :: Nat -> 0':s gen_nil::4_0 :: Nat -> nil:: Lemmas: +'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n6_0, b)), rt in Omega(1 + n6_0) ++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) -> gen_nil::4_0(+(n723_0, b)), rt in Omega(1 + n723_0) sum(gen_nil::4_0(+(1, n1576_0))) -> gen_nil::4_0(1), rt in Omega(1 + n1576_0) -(gen_0':s3_0(n1997_0), gen_0':s3_0(n1997_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1997_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil::4_0(0) <=> nil gen_nil::4_0(+(x, 1)) <=> :(0', gen_nil::4_0(x)) The following defined symbols remain to be analysed: quot, length ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length(gen_nil::4_0(n2624_0)) -> gen_0':s3_0(n2624_0), rt in Omega(1 + n2624_0) Induction Base: length(gen_nil::4_0(0)) ->_R^Omega(1) 0' Induction Step: length(gen_nil::4_0(+(n2624_0, 1))) ->_R^Omega(1) s(length(gen_nil::4_0(n2624_0))) ->_IH s(gen_0':s3_0(c2625_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) BOUNDS(1, INF)