/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(primes) -> mark(sieve(from(s(s(0))))) active(from(X)) -> mark(cons(X, from(s(X)))) active(head(cons(X, Y))) -> mark(X) active(tail(cons(X, Y))) -> mark(Y) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(filter(s(s(X)), cons(Y, Z))) -> mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))) active(sieve(cons(X, Y))) -> mark(cons(X, filter(X, sieve(Y)))) active(sieve(X)) -> sieve(active(X)) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(filter(X1, X2)) -> filter(active(X1), X2) active(filter(X1, X2)) -> filter(X1, active(X2)) active(divides(X1, X2)) -> divides(active(X1), X2) active(divides(X1, X2)) -> divides(X1, active(X2)) sieve(mark(X)) -> mark(sieve(X)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) filter(mark(X1), X2) -> mark(filter(X1, X2)) filter(X1, mark(X2)) -> mark(filter(X1, X2)) divides(mark(X1), X2) -> mark(divides(X1, X2)) divides(X1, mark(X2)) -> mark(divides(X1, X2)) proper(primes) -> ok(primes) proper(sieve(X)) -> sieve(proper(X)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(true) -> ok(true) proper(false) -> ok(false) proper(filter(X1, X2)) -> filter(proper(X1), proper(X2)) proper(divides(X1, X2)) -> divides(proper(X1), proper(X2)) sieve(ok(X)) -> ok(sieve(X)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) filter(ok(X1), ok(X2)) -> ok(filter(X1, X2)) divides(ok(X1), ok(X2)) -> ok(divides(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(primes) -> mark(sieve(from(s(s(0))))) active(from(X)) -> mark(cons(X, from(s(X)))) active(head(cons(X, Y))) -> mark(X) active(tail(cons(X, Y))) -> mark(Y) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(filter(s(s(X)), cons(Y, Z))) -> mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))) active(sieve(cons(X, Y))) -> mark(cons(X, filter(X, sieve(Y)))) active(sieve(X)) -> sieve(active(X)) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(filter(X1, X2)) -> filter(active(X1), X2) active(filter(X1, X2)) -> filter(X1, active(X2)) active(divides(X1, X2)) -> divides(active(X1), X2) active(divides(X1, X2)) -> divides(X1, active(X2)) sieve(mark(X)) -> mark(sieve(X)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) filter(mark(X1), X2) -> mark(filter(X1, X2)) filter(X1, mark(X2)) -> mark(filter(X1, X2)) divides(mark(X1), X2) -> mark(divides(X1, X2)) divides(X1, mark(X2)) -> mark(divides(X1, X2)) proper(primes) -> ok(primes) proper(sieve(X)) -> sieve(proper(X)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(true) -> ok(true) proper(false) -> ok(false) proper(filter(X1, X2)) -> filter(proper(X1), proper(X2)) proper(divides(X1, X2)) -> divides(proper(X1), proper(X2)) sieve(ok(X)) -> ok(sieve(X)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) filter(ok(X1), ok(X2)) -> ok(filter(X1, X2)) divides(ok(X1), ok(X2)) -> ok(divides(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence tail(ok(X)) ->^+ ok(tail(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / ok(X)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(primes) -> mark(sieve(from(s(s(0))))) active(from(X)) -> mark(cons(X, from(s(X)))) active(head(cons(X, Y))) -> mark(X) active(tail(cons(X, Y))) -> mark(Y) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(filter(s(s(X)), cons(Y, Z))) -> mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))) active(sieve(cons(X, Y))) -> mark(cons(X, filter(X, sieve(Y)))) active(sieve(X)) -> sieve(active(X)) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(filter(X1, X2)) -> filter(active(X1), X2) active(filter(X1, X2)) -> filter(X1, active(X2)) active(divides(X1, X2)) -> divides(active(X1), X2) active(divides(X1, X2)) -> divides(X1, active(X2)) sieve(mark(X)) -> mark(sieve(X)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) filter(mark(X1), X2) -> mark(filter(X1, X2)) filter(X1, mark(X2)) -> mark(filter(X1, X2)) divides(mark(X1), X2) -> mark(divides(X1, X2)) divides(X1, mark(X2)) -> mark(divides(X1, X2)) proper(primes) -> ok(primes) proper(sieve(X)) -> sieve(proper(X)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(true) -> ok(true) proper(false) -> ok(false) proper(filter(X1, X2)) -> filter(proper(X1), proper(X2)) proper(divides(X1, X2)) -> divides(proper(X1), proper(X2)) sieve(ok(X)) -> ok(sieve(X)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) filter(ok(X1), ok(X2)) -> ok(filter(X1, X2)) divides(ok(X1), ok(X2)) -> ok(divides(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(primes) -> mark(sieve(from(s(s(0))))) active(from(X)) -> mark(cons(X, from(s(X)))) active(head(cons(X, Y))) -> mark(X) active(tail(cons(X, Y))) -> mark(Y) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(filter(s(s(X)), cons(Y, Z))) -> mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))) active(sieve(cons(X, Y))) -> mark(cons(X, filter(X, sieve(Y)))) active(sieve(X)) -> sieve(active(X)) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(filter(X1, X2)) -> filter(active(X1), X2) active(filter(X1, X2)) -> filter(X1, active(X2)) active(divides(X1, X2)) -> divides(active(X1), X2) active(divides(X1, X2)) -> divides(X1, active(X2)) sieve(mark(X)) -> mark(sieve(X)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) filter(mark(X1), X2) -> mark(filter(X1, X2)) filter(X1, mark(X2)) -> mark(filter(X1, X2)) divides(mark(X1), X2) -> mark(divides(X1, X2)) divides(X1, mark(X2)) -> mark(divides(X1, X2)) proper(primes) -> ok(primes) proper(sieve(X)) -> sieve(proper(X)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(true) -> ok(true) proper(false) -> ok(false) proper(filter(X1, X2)) -> filter(proper(X1), proper(X2)) proper(divides(X1, X2)) -> divides(proper(X1), proper(X2)) sieve(ok(X)) -> ok(sieve(X)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) filter(ok(X1), ok(X2)) -> ok(filter(X1, X2)) divides(ok(X1), ok(X2)) -> ok(divides(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL