/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 109 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 425 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(a, X, X)) -> mark(f(X, b, b)) active(b) -> mark(a) active(f(X1, X2, X3)) -> f(X1, active(X2), X3) f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(f(a, X, X)) -> mark(f(X, b, b)) active(f(X1, X2, X3)) -> f(X1, active(X2), X3) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(b) -> mark(a) f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) proper(a) -> ok(a) proper(b) -> ok(b) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(b) -> mark(a) f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) proper(a) -> ok(a) proper(b) -> ok(b) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4] transitions: b0() -> 0 mark0(0) -> 0 a0() -> 0 ok0(0) -> 0 active0(0) -> 1 f0(0, 0, 0) -> 2 proper0(0) -> 3 top0(0) -> 4 a1() -> 5 mark1(5) -> 1 f1(0, 0, 0) -> 6 mark1(6) -> 2 a1() -> 7 ok1(7) -> 3 b1() -> 8 ok1(8) -> 3 f1(0, 0, 0) -> 9 ok1(9) -> 2 proper1(0) -> 10 top1(10) -> 4 active1(0) -> 11 top1(11) -> 4 mark1(5) -> 11 mark1(6) -> 6 mark1(6) -> 9 ok1(7) -> 10 ok1(8) -> 10 ok1(9) -> 6 ok1(9) -> 9 proper2(5) -> 12 top2(12) -> 4 active2(7) -> 13 top2(13) -> 4 active2(8) -> 13 a2() -> 14 mark2(14) -> 13 a2() -> 15 ok2(15) -> 12 proper3(14) -> 16 top3(16) -> 4 active3(15) -> 17 top3(17) -> 4 a3() -> 18 ok3(18) -> 16 active4(18) -> 19 top4(19) -> 4 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(f(a, X, X)) -> mark(f(X, b, b)) active(b) -> mark(a) active(f(X1, X2, X3)) -> f(X1, active(X2), X3) f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(f(a, X, X)) -> mark(f(X, b, b)) active(b) -> mark(a) active(f(X1, X2, X3)) -> f(X1, active(X2), X3) f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:b:mark:ok -> a:b:mark:ok f :: a:b:mark:ok -> a:b:mark:ok -> a:b:mark:ok -> a:b:mark:ok a :: a:b:mark:ok mark :: a:b:mark:ok -> a:b:mark:ok b :: a:b:mark:ok proper :: a:b:mark:ok -> a:b:mark:ok ok :: a:b:mark:ok -> a:b:mark:ok top :: a:b:mark:ok -> top hole_a:b:mark:ok1_0 :: a:b:mark:ok hole_top2_0 :: top gen_a:b:mark:ok3_0 :: Nat -> a:b:mark:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, f, proper, top They will be analysed ascendingly in the following order: f < active active < top f < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(f(a, X, X)) -> mark(f(X, b, b)) active(b) -> mark(a) active(f(X1, X2, X3)) -> f(X1, active(X2), X3) f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:b:mark:ok -> a:b:mark:ok f :: a:b:mark:ok -> a:b:mark:ok -> a:b:mark:ok -> a:b:mark:ok a :: a:b:mark:ok mark :: a:b:mark:ok -> a:b:mark:ok b :: a:b:mark:ok proper :: a:b:mark:ok -> a:b:mark:ok ok :: a:b:mark:ok -> a:b:mark:ok top :: a:b:mark:ok -> top hole_a:b:mark:ok1_0 :: a:b:mark:ok hole_top2_0 :: top gen_a:b:mark:ok3_0 :: Nat -> a:b:mark:ok Generator Equations: gen_a:b:mark:ok3_0(0) <=> a gen_a:b:mark:ok3_0(+(x, 1)) <=> mark(gen_a:b:mark:ok3_0(x)) The following defined symbols remain to be analysed: f, active, proper, top They will be analysed ascendingly in the following order: f < active active < top f < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_a:b:mark:ok3_0(a), gen_a:b:mark:ok3_0(+(1, n5_0)), gen_a:b:mark:ok3_0(c)) -> *4_0, rt in Omega(n5_0) Induction Base: f(gen_a:b:mark:ok3_0(a), gen_a:b:mark:ok3_0(+(1, 0)), gen_a:b:mark:ok3_0(c)) Induction Step: f(gen_a:b:mark:ok3_0(a), gen_a:b:mark:ok3_0(+(1, +(n5_0, 1))), gen_a:b:mark:ok3_0(c)) ->_R^Omega(1) mark(f(gen_a:b:mark:ok3_0(a), gen_a:b:mark:ok3_0(+(1, n5_0)), gen_a:b:mark:ok3_0(c))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(f(a, X, X)) -> mark(f(X, b, b)) active(b) -> mark(a) active(f(X1, X2, X3)) -> f(X1, active(X2), X3) f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:b:mark:ok -> a:b:mark:ok f :: a:b:mark:ok -> a:b:mark:ok -> a:b:mark:ok -> a:b:mark:ok a :: a:b:mark:ok mark :: a:b:mark:ok -> a:b:mark:ok b :: a:b:mark:ok proper :: a:b:mark:ok -> a:b:mark:ok ok :: a:b:mark:ok -> a:b:mark:ok top :: a:b:mark:ok -> top hole_a:b:mark:ok1_0 :: a:b:mark:ok hole_top2_0 :: top gen_a:b:mark:ok3_0 :: Nat -> a:b:mark:ok Generator Equations: gen_a:b:mark:ok3_0(0) <=> a gen_a:b:mark:ok3_0(+(x, 1)) <=> mark(gen_a:b:mark:ok3_0(x)) The following defined symbols remain to be analysed: f, active, proper, top They will be analysed ascendingly in the following order: f < active active < top f < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(f(a, X, X)) -> mark(f(X, b, b)) active(b) -> mark(a) active(f(X1, X2, X3)) -> f(X1, active(X2), X3) f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:b:mark:ok -> a:b:mark:ok f :: a:b:mark:ok -> a:b:mark:ok -> a:b:mark:ok -> a:b:mark:ok a :: a:b:mark:ok mark :: a:b:mark:ok -> a:b:mark:ok b :: a:b:mark:ok proper :: a:b:mark:ok -> a:b:mark:ok ok :: a:b:mark:ok -> a:b:mark:ok top :: a:b:mark:ok -> top hole_a:b:mark:ok1_0 :: a:b:mark:ok hole_top2_0 :: top gen_a:b:mark:ok3_0 :: Nat -> a:b:mark:ok Lemmas: f(gen_a:b:mark:ok3_0(a), gen_a:b:mark:ok3_0(+(1, n5_0)), gen_a:b:mark:ok3_0(c)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_a:b:mark:ok3_0(0) <=> a gen_a:b:mark:ok3_0(+(x, 1)) <=> mark(gen_a:b:mark:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top