/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence filter(X1, mark(X2), X3) ->^+ mark(filter(X1, X2, X3)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X2 / mark(X2)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) active(nats(N)) -> mark(cons(N, nats(s(N)))) active(zprimes) -> mark(sieve(nats(s(s(0))))) active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes) -> ok(zprimes) filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL