/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 45 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isNePal(__(I, __(P, I)))) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isNePal(__(I, __(P, I)))) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) active(isNePal(X)) -> isNePal(active(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNePal(X)) -> isNePal(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) isNePal(mark(X)) -> mark(isNePal(X)) proper(nil) -> ok(nil) proper(tt) -> ok(tt) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) isNePal(mark(X)) -> mark(isNePal(X)) proper(nil) -> ok(nil) proper(tt) -> ok(tt) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5] transitions: mark0(0) -> 0 nil0() -> 0 ok0(0) -> 0 tt0() -> 0 active0(0) -> 0 __0(0, 0) -> 1 and0(0, 0) -> 2 isNePal0(0) -> 3 proper0(0) -> 4 top0(0) -> 5 __1(0, 0) -> 6 mark1(6) -> 1 and1(0, 0) -> 7 mark1(7) -> 2 isNePal1(0) -> 8 mark1(8) -> 3 nil1() -> 9 ok1(9) -> 4 tt1() -> 10 ok1(10) -> 4 __1(0, 0) -> 11 ok1(11) -> 1 and1(0, 0) -> 12 ok1(12) -> 2 isNePal1(0) -> 13 ok1(13) -> 3 proper1(0) -> 14 top1(14) -> 5 active1(0) -> 15 top1(15) -> 5 mark1(6) -> 6 mark1(6) -> 11 mark1(7) -> 7 mark1(7) -> 12 mark1(8) -> 8 mark1(8) -> 13 ok1(9) -> 14 ok1(10) -> 14 ok1(11) -> 6 ok1(11) -> 11 ok1(12) -> 7 ok1(12) -> 12 ok1(13) -> 8 ok1(13) -> 13 active2(9) -> 16 top2(16) -> 5 active2(10) -> 16 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isNePal(__(I, __(P, I)))) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence __(mark(X1), X2) ->^+ mark(__(X1, X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / mark(X1)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isNePal(__(I, __(P, I)))) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isNePal(__(I, __(P, I)))) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL