/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) InfiniteLowerBoundProof [FINISHED, 0 ms] (10) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: f(g(X), Y) -> f(X, n__f(g(X), activate(Y))) f(X1, X2) -> n__f(X1, X2) activate(n__f(X1, X2)) -> f(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: f(g(X), Y) -> f(X, n__f(g(X), activate(Y))) f(X1, X2) -> n__f(X1, X2) activate(n__f(X1, X2)) -> f(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(g(X), Y) ->^+ f(X, n__f(g(X), activate(Y))) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [X / g(X)]. The result substitution is [Y / n__f(g(X), activate(Y))]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: f(g(X), Y) -> f(X, n__f(g(X), activate(Y))) f(X1, X2) -> n__f(X1, X2) activate(n__f(X1, X2)) -> f(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: f(g(X), Y) -> f(X, n__f(g(X), activate(Y))) f(X1, X2) -> n__f(X1, X2) activate(n__f(X1, X2)) -> f(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence f(g(g(X1_0)), Y) ->^+ f(X1_0, n__f(g(X1_0), f(g(g(X1_0)), activate(Y)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1]. The pumping substitution is [ ]. The result substitution is [Y / activate(Y)]. ---------------------------------------- (10) BOUNDS(INF, INF)