/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 86 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 438 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 153 ms] (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isList(V)) -> mark(isNeList(V)) active(isList(nil)) -> mark(tt) active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2))) active(isNeList(V)) -> mark(isQid(V)) active(isNeList(__(V1, V2))) -> mark(and(isList(V1), isNeList(V2))) active(isNeList(__(V1, V2))) -> mark(and(isNeList(V1), isList(V2))) active(isNePal(V)) -> mark(isQid(V)) active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P))) active(isPal(V)) -> mark(isNePal(V)) active(isPal(nil)) -> mark(tt) active(isQid(a)) -> mark(tt) active(isQid(e)) -> mark(tt) active(isQid(i)) -> mark(tt) active(isQid(o)) -> mark(tt) active(isQid(u)) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isList(X)) -> isList(proper(X)) proper(isNeList(X)) -> isNeList(proper(X)) proper(isQid(X)) -> isQid(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) proper(isPal(X)) -> isPal(proper(X)) proper(a) -> ok(a) proper(e) -> ok(e) proper(i) -> ok(i) proper(o) -> ok(o) proper(u) -> ok(u) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isList(ok(X)) -> ok(isList(X)) isNeList(ok(X)) -> ok(isNeList(X)) isQid(ok(X)) -> ok(isQid(X)) isNePal(ok(X)) -> ok(isNePal(X)) isPal(ok(X)) -> ok(isPal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isList(V)) -> mark(isNeList(V)) active(isList(nil)) -> mark(tt) active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2))) active(isNeList(V)) -> mark(isQid(V)) active(isNeList(__(V1, V2))) -> mark(and(isList(V1), isNeList(V2))) active(isNeList(__(V1, V2))) -> mark(and(isNeList(V1), isList(V2))) active(isNePal(V)) -> mark(isQid(V)) active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P))) active(isPal(V)) -> mark(isNePal(V)) active(isPal(nil)) -> mark(tt) active(isQid(a)) -> mark(tt) active(isQid(e)) -> mark(tt) active(isQid(i)) -> mark(tt) active(isQid(o)) -> mark(tt) active(isQid(u)) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isList(X)) -> isList(proper(X)) proper(isNeList(X)) -> isNeList(proper(X)) proper(isQid(X)) -> isQid(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) proper(isPal(X)) -> isPal(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(nil) -> ok(nil) proper(tt) -> ok(tt) proper(a) -> ok(a) proper(e) -> ok(e) proper(i) -> ok(i) proper(o) -> ok(o) proper(u) -> ok(u) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isList(ok(X)) -> ok(isList(X)) isNeList(ok(X)) -> ok(isNeList(X)) isQid(ok(X)) -> ok(isQid(X)) isNePal(ok(X)) -> ok(isNePal(X)) isPal(ok(X)) -> ok(isPal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(nil) -> ok(nil) proper(tt) -> ok(tt) proper(a) -> ok(a) proper(e) -> ok(e) proper(i) -> ok(i) proper(o) -> ok(o) proper(u) -> ok(u) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isList(ok(X)) -> ok(isList(X)) isNeList(ok(X)) -> ok(isNeList(X)) isQid(ok(X)) -> ok(isQid(X)) isNePal(ok(X)) -> ok(isNePal(X)) isPal(ok(X)) -> ok(isPal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9] transitions: mark0(0) -> 0 nil0() -> 0 ok0(0) -> 0 tt0() -> 0 a0() -> 0 e0() -> 0 i0() -> 0 o0() -> 0 u0() -> 0 active0(0) -> 0 __0(0, 0) -> 1 and0(0, 0) -> 2 proper0(0) -> 3 isList0(0) -> 4 isNeList0(0) -> 5 isQid0(0) -> 6 isNePal0(0) -> 7 isPal0(0) -> 8 top0(0) -> 9 __1(0, 0) -> 10 mark1(10) -> 1 and1(0, 0) -> 11 mark1(11) -> 2 nil1() -> 12 ok1(12) -> 3 tt1() -> 13 ok1(13) -> 3 a1() -> 14 ok1(14) -> 3 e1() -> 15 ok1(15) -> 3 i1() -> 16 ok1(16) -> 3 o1() -> 17 ok1(17) -> 3 u1() -> 18 ok1(18) -> 3 __1(0, 0) -> 19 ok1(19) -> 1 and1(0, 0) -> 20 ok1(20) -> 2 isList1(0) -> 21 ok1(21) -> 4 isNeList1(0) -> 22 ok1(22) -> 5 isQid1(0) -> 23 ok1(23) -> 6 isNePal1(0) -> 24 ok1(24) -> 7 isPal1(0) -> 25 ok1(25) -> 8 proper1(0) -> 26 top1(26) -> 9 active1(0) -> 27 top1(27) -> 9 mark1(10) -> 10 mark1(10) -> 19 mark1(11) -> 11 mark1(11) -> 20 ok1(12) -> 26 ok1(13) -> 26 ok1(14) -> 26 ok1(15) -> 26 ok1(16) -> 26 ok1(17) -> 26 ok1(18) -> 26 ok1(19) -> 10 ok1(19) -> 19 ok1(20) -> 11 ok1(20) -> 20 ok1(21) -> 21 ok1(22) -> 22 ok1(23) -> 23 ok1(24) -> 24 ok1(25) -> 25 active2(12) -> 28 top2(28) -> 9 active2(13) -> 28 active2(14) -> 28 active2(15) -> 28 active2(16) -> 28 active2(17) -> 28 active2(18) -> 28 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isList(V)) -> mark(isNeList(V)) active(isList(nil)) -> mark(tt) active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2))) active(isNeList(V)) -> mark(isQid(V)) active(isNeList(__(V1, V2))) -> mark(and(isList(V1), isNeList(V2))) active(isNeList(__(V1, V2))) -> mark(and(isNeList(V1), isList(V2))) active(isNePal(V)) -> mark(isQid(V)) active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P))) active(isPal(V)) -> mark(isNePal(V)) active(isPal(nil)) -> mark(tt) active(isQid(a)) -> mark(tt) active(isQid(e)) -> mark(tt) active(isQid(i)) -> mark(tt) active(isQid(o)) -> mark(tt) active(isQid(u)) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isList(X)) -> isList(proper(X)) proper(isNeList(X)) -> isNeList(proper(X)) proper(isQid(X)) -> isQid(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) proper(isPal(X)) -> isPal(proper(X)) proper(a) -> ok(a) proper(e) -> ok(e) proper(i) -> ok(i) proper(o) -> ok(o) proper(u) -> ok(u) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isList(ok(X)) -> ok(isList(X)) isNeList(ok(X)) -> ok(isNeList(X)) isQid(ok(X)) -> ok(isQid(X)) isNePal(ok(X)) -> ok(isNePal(X)) isPal(ok(X)) -> ok(isPal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isList(V)) -> mark(isNeList(V)) active(isList(nil)) -> mark(tt) active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2))) active(isNeList(V)) -> mark(isQid(V)) active(isNeList(__(V1, V2))) -> mark(and(isList(V1), isNeList(V2))) active(isNeList(__(V1, V2))) -> mark(and(isNeList(V1), isList(V2))) active(isNePal(V)) -> mark(isQid(V)) active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P))) active(isPal(V)) -> mark(isNePal(V)) active(isPal(nil)) -> mark(tt) active(isQid(a)) -> mark(tt) active(isQid(e)) -> mark(tt) active(isQid(i)) -> mark(tt) active(isQid(o)) -> mark(tt) active(isQid(u)) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isList(X)) -> isList(proper(X)) proper(isNeList(X)) -> isNeList(proper(X)) proper(isQid(X)) -> isQid(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) proper(isPal(X)) -> isPal(proper(X)) proper(a) -> ok(a) proper(e) -> ok(e) proper(i) -> ok(i) proper(o) -> ok(o) proper(u) -> ok(u) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isList(ok(X)) -> ok(isList(X)) isNeList(ok(X)) -> ok(isNeList(X)) isQid(ok(X)) -> ok(isQid(X)) isNePal(ok(X)) -> ok(isNePal(X)) isPal(ok(X)) -> ok(isPal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok __ :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok mark :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok nil :: mark:nil:tt:a:e:i:o:u:ok and :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok tt :: mark:nil:tt:a:e:i:o:u:ok isList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNeList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isQid :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNePal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isPal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok a :: mark:nil:tt:a:e:i:o:u:ok e :: mark:nil:tt:a:e:i:o:u:ok i :: mark:nil:tt:a:e:i:o:u:ok o :: mark:nil:tt:a:e:i:o:u:ok u :: mark:nil:tt:a:e:i:o:u:ok proper :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok ok :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok top :: mark:nil:tt:a:e:i:o:u:ok -> top hole_mark:nil:tt:a:e:i:o:u:ok1_0 :: mark:nil:tt:a:e:i:o:u:ok hole_top2_0 :: top gen_mark:nil:tt:a:e:i:o:u:ok3_0 :: Nat -> mark:nil:tt:a:e:i:o:u:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, __, isNeList, and, isList, isQid, isPal, isNePal, proper, top They will be analysed ascendingly in the following order: __ < active isNeList < active and < active isList < active isQid < active isPal < active isNePal < active active < top __ < proper isNeList < proper and < proper isList < proper isQid < proper isPal < proper isNePal < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isList(V)) -> mark(isNeList(V)) active(isList(nil)) -> mark(tt) active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2))) active(isNeList(V)) -> mark(isQid(V)) active(isNeList(__(V1, V2))) -> mark(and(isList(V1), isNeList(V2))) active(isNeList(__(V1, V2))) -> mark(and(isNeList(V1), isList(V2))) active(isNePal(V)) -> mark(isQid(V)) active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P))) active(isPal(V)) -> mark(isNePal(V)) active(isPal(nil)) -> mark(tt) active(isQid(a)) -> mark(tt) active(isQid(e)) -> mark(tt) active(isQid(i)) -> mark(tt) active(isQid(o)) -> mark(tt) active(isQid(u)) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isList(X)) -> isList(proper(X)) proper(isNeList(X)) -> isNeList(proper(X)) proper(isQid(X)) -> isQid(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) proper(isPal(X)) -> isPal(proper(X)) proper(a) -> ok(a) proper(e) -> ok(e) proper(i) -> ok(i) proper(o) -> ok(o) proper(u) -> ok(u) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isList(ok(X)) -> ok(isList(X)) isNeList(ok(X)) -> ok(isNeList(X)) isQid(ok(X)) -> ok(isQid(X)) isNePal(ok(X)) -> ok(isNePal(X)) isPal(ok(X)) -> ok(isPal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok __ :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok mark :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok nil :: mark:nil:tt:a:e:i:o:u:ok and :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok tt :: mark:nil:tt:a:e:i:o:u:ok isList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNeList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isQid :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNePal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isPal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok a :: mark:nil:tt:a:e:i:o:u:ok e :: mark:nil:tt:a:e:i:o:u:ok i :: mark:nil:tt:a:e:i:o:u:ok o :: mark:nil:tt:a:e:i:o:u:ok u :: mark:nil:tt:a:e:i:o:u:ok proper :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok ok :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok top :: mark:nil:tt:a:e:i:o:u:ok -> top hole_mark:nil:tt:a:e:i:o:u:ok1_0 :: mark:nil:tt:a:e:i:o:u:ok hole_top2_0 :: top gen_mark:nil:tt:a:e:i:o:u:ok3_0 :: Nat -> mark:nil:tt:a:e:i:o:u:ok Generator Equations: gen_mark:nil:tt:a:e:i:o:u:ok3_0(0) <=> nil gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(x, 1)) <=> mark(gen_mark:nil:tt:a:e:i:o:u:ok3_0(x)) The following defined symbols remain to be analysed: __, active, isNeList, and, isList, isQid, isPal, isNePal, proper, top They will be analysed ascendingly in the following order: __ < active isNeList < active and < active isList < active isQid < active isPal < active isNePal < active active < top __ < proper isNeList < proper and < proper isList < proper isQid < proper isPal < proper isNePal < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: __(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, n5_0)), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: __(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, 0)), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b)) Induction Step: __(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, +(n5_0, 1))), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b)) ->_R^Omega(1) mark(__(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, n5_0)), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isList(V)) -> mark(isNeList(V)) active(isList(nil)) -> mark(tt) active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2))) active(isNeList(V)) -> mark(isQid(V)) active(isNeList(__(V1, V2))) -> mark(and(isList(V1), isNeList(V2))) active(isNeList(__(V1, V2))) -> mark(and(isNeList(V1), isList(V2))) active(isNePal(V)) -> mark(isQid(V)) active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P))) active(isPal(V)) -> mark(isNePal(V)) active(isPal(nil)) -> mark(tt) active(isQid(a)) -> mark(tt) active(isQid(e)) -> mark(tt) active(isQid(i)) -> mark(tt) active(isQid(o)) -> mark(tt) active(isQid(u)) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isList(X)) -> isList(proper(X)) proper(isNeList(X)) -> isNeList(proper(X)) proper(isQid(X)) -> isQid(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) proper(isPal(X)) -> isPal(proper(X)) proper(a) -> ok(a) proper(e) -> ok(e) proper(i) -> ok(i) proper(o) -> ok(o) proper(u) -> ok(u) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isList(ok(X)) -> ok(isList(X)) isNeList(ok(X)) -> ok(isNeList(X)) isQid(ok(X)) -> ok(isQid(X)) isNePal(ok(X)) -> ok(isNePal(X)) isPal(ok(X)) -> ok(isPal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok __ :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok mark :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok nil :: mark:nil:tt:a:e:i:o:u:ok and :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok tt :: mark:nil:tt:a:e:i:o:u:ok isList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNeList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isQid :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNePal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isPal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok a :: mark:nil:tt:a:e:i:o:u:ok e :: mark:nil:tt:a:e:i:o:u:ok i :: mark:nil:tt:a:e:i:o:u:ok o :: mark:nil:tt:a:e:i:o:u:ok u :: mark:nil:tt:a:e:i:o:u:ok proper :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok ok :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok top :: mark:nil:tt:a:e:i:o:u:ok -> top hole_mark:nil:tt:a:e:i:o:u:ok1_0 :: mark:nil:tt:a:e:i:o:u:ok hole_top2_0 :: top gen_mark:nil:tt:a:e:i:o:u:ok3_0 :: Nat -> mark:nil:tt:a:e:i:o:u:ok Generator Equations: gen_mark:nil:tt:a:e:i:o:u:ok3_0(0) <=> nil gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(x, 1)) <=> mark(gen_mark:nil:tt:a:e:i:o:u:ok3_0(x)) The following defined symbols remain to be analysed: __, active, isNeList, and, isList, isQid, isPal, isNePal, proper, top They will be analysed ascendingly in the following order: __ < active isNeList < active and < active isList < active isQid < active isPal < active isNePal < active active < top __ < proper isNeList < proper and < proper isList < proper isQid < proper isPal < proper isNePal < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isList(V)) -> mark(isNeList(V)) active(isList(nil)) -> mark(tt) active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2))) active(isNeList(V)) -> mark(isQid(V)) active(isNeList(__(V1, V2))) -> mark(and(isList(V1), isNeList(V2))) active(isNeList(__(V1, V2))) -> mark(and(isNeList(V1), isList(V2))) active(isNePal(V)) -> mark(isQid(V)) active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P))) active(isPal(V)) -> mark(isNePal(V)) active(isPal(nil)) -> mark(tt) active(isQid(a)) -> mark(tt) active(isQid(e)) -> mark(tt) active(isQid(i)) -> mark(tt) active(isQid(o)) -> mark(tt) active(isQid(u)) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isList(X)) -> isList(proper(X)) proper(isNeList(X)) -> isNeList(proper(X)) proper(isQid(X)) -> isQid(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) proper(isPal(X)) -> isPal(proper(X)) proper(a) -> ok(a) proper(e) -> ok(e) proper(i) -> ok(i) proper(o) -> ok(o) proper(u) -> ok(u) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isList(ok(X)) -> ok(isList(X)) isNeList(ok(X)) -> ok(isNeList(X)) isQid(ok(X)) -> ok(isQid(X)) isNePal(ok(X)) -> ok(isNePal(X)) isPal(ok(X)) -> ok(isPal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok __ :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok mark :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok nil :: mark:nil:tt:a:e:i:o:u:ok and :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok tt :: mark:nil:tt:a:e:i:o:u:ok isList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNeList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isQid :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNePal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isPal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok a :: mark:nil:tt:a:e:i:o:u:ok e :: mark:nil:tt:a:e:i:o:u:ok i :: mark:nil:tt:a:e:i:o:u:ok o :: mark:nil:tt:a:e:i:o:u:ok u :: mark:nil:tt:a:e:i:o:u:ok proper :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok ok :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok top :: mark:nil:tt:a:e:i:o:u:ok -> top hole_mark:nil:tt:a:e:i:o:u:ok1_0 :: mark:nil:tt:a:e:i:o:u:ok hole_top2_0 :: top gen_mark:nil:tt:a:e:i:o:u:ok3_0 :: Nat -> mark:nil:tt:a:e:i:o:u:ok Lemmas: __(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, n5_0)), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_mark:nil:tt:a:e:i:o:u:ok3_0(0) <=> nil gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(x, 1)) <=> mark(gen_mark:nil:tt:a:e:i:o:u:ok3_0(x)) The following defined symbols remain to be analysed: isNeList, active, and, isList, isQid, isPal, isNePal, proper, top They will be analysed ascendingly in the following order: isNeList < active and < active isList < active isQid < active isPal < active isNePal < active active < top isNeList < proper and < proper isList < proper isQid < proper isPal < proper isNePal < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: and(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, n1320_0)), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b)) -> *4_0, rt in Omega(n1320_0) Induction Base: and(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, 0)), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b)) Induction Step: and(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, +(n1320_0, 1))), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b)) ->_R^Omega(1) mark(and(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, n1320_0)), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(and(tt, X)) -> mark(X) active(isList(V)) -> mark(isNeList(V)) active(isList(nil)) -> mark(tt) active(isList(__(V1, V2))) -> mark(and(isList(V1), isList(V2))) active(isNeList(V)) -> mark(isQid(V)) active(isNeList(__(V1, V2))) -> mark(and(isList(V1), isNeList(V2))) active(isNeList(__(V1, V2))) -> mark(and(isNeList(V1), isList(V2))) active(isNePal(V)) -> mark(isQid(V)) active(isNePal(__(I, __(P, I)))) -> mark(and(isQid(I), isPal(P))) active(isPal(V)) -> mark(isNePal(V)) active(isPal(nil)) -> mark(tt) active(isQid(a)) -> mark(tt) active(isQid(e)) -> mark(tt) active(isQid(i)) -> mark(tt) active(isQid(o)) -> mark(tt) active(isQid(u)) -> mark(tt) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(isList(X)) -> isList(proper(X)) proper(isNeList(X)) -> isNeList(proper(X)) proper(isQid(X)) -> isQid(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) proper(isPal(X)) -> isPal(proper(X)) proper(a) -> ok(a) proper(e) -> ok(e) proper(i) -> ok(i) proper(o) -> ok(o) proper(u) -> ok(u) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isList(ok(X)) -> ok(isList(X)) isNeList(ok(X)) -> ok(isNeList(X)) isQid(ok(X)) -> ok(isQid(X)) isNePal(ok(X)) -> ok(isNePal(X)) isPal(ok(X)) -> ok(isPal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok __ :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok mark :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok nil :: mark:nil:tt:a:e:i:o:u:ok and :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok tt :: mark:nil:tt:a:e:i:o:u:ok isList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNeList :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isQid :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isNePal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok isPal :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok a :: mark:nil:tt:a:e:i:o:u:ok e :: mark:nil:tt:a:e:i:o:u:ok i :: mark:nil:tt:a:e:i:o:u:ok o :: mark:nil:tt:a:e:i:o:u:ok u :: mark:nil:tt:a:e:i:o:u:ok proper :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok ok :: mark:nil:tt:a:e:i:o:u:ok -> mark:nil:tt:a:e:i:o:u:ok top :: mark:nil:tt:a:e:i:o:u:ok -> top hole_mark:nil:tt:a:e:i:o:u:ok1_0 :: mark:nil:tt:a:e:i:o:u:ok hole_top2_0 :: top gen_mark:nil:tt:a:e:i:o:u:ok3_0 :: Nat -> mark:nil:tt:a:e:i:o:u:ok Lemmas: __(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, n5_0)), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b)) -> *4_0, rt in Omega(n5_0) and(gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(1, n1320_0)), gen_mark:nil:tt:a:e:i:o:u:ok3_0(b)) -> *4_0, rt in Omega(n1320_0) Generator Equations: gen_mark:nil:tt:a:e:i:o:u:ok3_0(0) <=> nil gen_mark:nil:tt:a:e:i:o:u:ok3_0(+(x, 1)) <=> mark(gen_mark:nil:tt:a:e:i:o:u:ok3_0(x)) The following defined symbols remain to be analysed: isList, active, isQid, isPal, isNePal, proper, top They will be analysed ascendingly in the following order: isList < active isQid < active isPal < active isNePal < active active < top isList < proper isQid < proper isPal < proper isNePal < proper proper < top