/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) DecreasingLoopProof [FINISHED, 4194 ms] (10) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__zeros -> cons(0, zeros) a__U11(tt, L) -> s(a__length(mark(L))) a__U21(tt) -> nil a__U31(tt, IL, M, N) -> cons(mark(N), take(M, IL)) a__and(tt, X) -> mark(X) a__isNat(0) -> tt a__isNat(length(V1)) -> a__isNatList(V1) a__isNat(s(V1)) -> a__isNat(V1) a__isNatIList(V) -> a__isNatList(V) a__isNatIList(zeros) -> tt a__isNatIList(cons(V1, V2)) -> a__and(a__isNat(V1), isNatIList(V2)) a__isNatList(nil) -> tt a__isNatList(cons(V1, V2)) -> a__and(a__isNat(V1), isNatList(V2)) a__isNatList(take(V1, V2)) -> a__and(a__isNat(V1), isNatIList(V2)) a__length(nil) -> 0 a__length(cons(N, L)) -> a__U11(a__and(a__isNatList(L), isNat(N)), L) a__take(0, IL) -> a__U21(a__isNatIList(IL)) a__take(s(M), cons(N, IL)) -> a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N) mark(zeros) -> a__zeros mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(length(X)) -> a__length(mark(X)) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2, X3, X4)) -> a__U31(mark(X1), X2, X3, X4) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(and(X1, X2)) -> a__and(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(isNatList(X)) -> a__isNatList(X) mark(isNatIList(X)) -> a__isNatIList(X) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(nil) -> nil a__zeros -> zeros a__U11(X1, X2) -> U11(X1, X2) a__length(X) -> length(X) a__U21(X) -> U21(X) a__U31(X1, X2, X3, X4) -> U31(X1, X2, X3, X4) a__take(X1, X2) -> take(X1, X2) a__and(X1, X2) -> and(X1, X2) a__isNat(X) -> isNat(X) a__isNatList(X) -> isNatList(X) a__isNatIList(X) -> isNatIList(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__zeros -> cons(0, zeros) a__U11(tt, L) -> s(a__length(mark(L))) a__U21(tt) -> nil a__U31(tt, IL, M, N) -> cons(mark(N), take(M, IL)) a__and(tt, X) -> mark(X) a__isNat(0) -> tt a__isNat(length(V1)) -> a__isNatList(V1) a__isNat(s(V1)) -> a__isNat(V1) a__isNatIList(V) -> a__isNatList(V) a__isNatIList(zeros) -> tt a__isNatIList(cons(V1, V2)) -> a__and(a__isNat(V1), isNatIList(V2)) a__isNatList(nil) -> tt a__isNatList(cons(V1, V2)) -> a__and(a__isNat(V1), isNatList(V2)) a__isNatList(take(V1, V2)) -> a__and(a__isNat(V1), isNatIList(V2)) a__length(nil) -> 0 a__length(cons(N, L)) -> a__U11(a__and(a__isNatList(L), isNat(N)), L) a__take(0, IL) -> a__U21(a__isNatIList(IL)) a__take(s(M), cons(N, IL)) -> a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N) mark(zeros) -> a__zeros mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(length(X)) -> a__length(mark(X)) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2, X3, X4)) -> a__U31(mark(X1), X2, X3, X4) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(and(X1, X2)) -> a__and(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(isNatList(X)) -> a__isNatList(X) mark(isNatIList(X)) -> a__isNatIList(X) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(nil) -> nil a__zeros -> zeros a__U11(X1, X2) -> U11(X1, X2) a__length(X) -> length(X) a__U21(X) -> U21(X) a__U31(X1, X2, X3, X4) -> U31(X1, X2, X3, X4) a__take(X1, X2) -> take(X1, X2) a__and(X1, X2) -> and(X1, X2) a__isNat(X) -> isNat(X) a__isNatList(X) -> isNatList(X) a__isNatIList(X) -> isNatIList(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(length(X)) ->^+ a__length(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / length(X)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__zeros -> cons(0, zeros) a__U11(tt, L) -> s(a__length(mark(L))) a__U21(tt) -> nil a__U31(tt, IL, M, N) -> cons(mark(N), take(M, IL)) a__and(tt, X) -> mark(X) a__isNat(0) -> tt a__isNat(length(V1)) -> a__isNatList(V1) a__isNat(s(V1)) -> a__isNat(V1) a__isNatIList(V) -> a__isNatList(V) a__isNatIList(zeros) -> tt a__isNatIList(cons(V1, V2)) -> a__and(a__isNat(V1), isNatIList(V2)) a__isNatList(nil) -> tt a__isNatList(cons(V1, V2)) -> a__and(a__isNat(V1), isNatList(V2)) a__isNatList(take(V1, V2)) -> a__and(a__isNat(V1), isNatIList(V2)) a__length(nil) -> 0 a__length(cons(N, L)) -> a__U11(a__and(a__isNatList(L), isNat(N)), L) a__take(0, IL) -> a__U21(a__isNatIList(IL)) a__take(s(M), cons(N, IL)) -> a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N) mark(zeros) -> a__zeros mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(length(X)) -> a__length(mark(X)) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2, X3, X4)) -> a__U31(mark(X1), X2, X3, X4) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(and(X1, X2)) -> a__and(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(isNatList(X)) -> a__isNatList(X) mark(isNatIList(X)) -> a__isNatIList(X) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(nil) -> nil a__zeros -> zeros a__U11(X1, X2) -> U11(X1, X2) a__length(X) -> length(X) a__U21(X) -> U21(X) a__U31(X1, X2, X3, X4) -> U31(X1, X2, X3, X4) a__take(X1, X2) -> take(X1, X2) a__and(X1, X2) -> and(X1, X2) a__isNat(X) -> isNat(X) a__isNatList(X) -> isNatList(X) a__isNatIList(X) -> isNatIList(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__zeros -> cons(0, zeros) a__U11(tt, L) -> s(a__length(mark(L))) a__U21(tt) -> nil a__U31(tt, IL, M, N) -> cons(mark(N), take(M, IL)) a__and(tt, X) -> mark(X) a__isNat(0) -> tt a__isNat(length(V1)) -> a__isNatList(V1) a__isNat(s(V1)) -> a__isNat(V1) a__isNatIList(V) -> a__isNatList(V) a__isNatIList(zeros) -> tt a__isNatIList(cons(V1, V2)) -> a__and(a__isNat(V1), isNatIList(V2)) a__isNatList(nil) -> tt a__isNatList(cons(V1, V2)) -> a__and(a__isNat(V1), isNatList(V2)) a__isNatList(take(V1, V2)) -> a__and(a__isNat(V1), isNatIList(V2)) a__length(nil) -> 0 a__length(cons(N, L)) -> a__U11(a__and(a__isNatList(L), isNat(N)), L) a__take(0, IL) -> a__U21(a__isNatIList(IL)) a__take(s(M), cons(N, IL)) -> a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N) mark(zeros) -> a__zeros mark(U11(X1, X2)) -> a__U11(mark(X1), X2) mark(length(X)) -> a__length(mark(X)) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X1, X2, X3, X4)) -> a__U31(mark(X1), X2, X3, X4) mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(and(X1, X2)) -> a__and(mark(X1), X2) mark(isNat(X)) -> a__isNat(X) mark(isNatList(X)) -> a__isNatList(X) mark(isNatIList(X)) -> a__isNatIList(X) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(tt) -> tt mark(s(X)) -> s(mark(X)) mark(nil) -> nil a__zeros -> zeros a__U11(X1, X2) -> U11(X1, X2) a__length(X) -> length(X) a__U21(X) -> U21(X) a__U31(X1, X2, X3, X4) -> U31(X1, X2, X3, X4) a__take(X1, X2) -> take(X1, X2) a__and(X1, X2) -> and(X1, X2) a__isNat(X) -> isNat(X) a__isNatList(X) -> isNatList(X) a__isNatIList(X) -> isNatIList(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence mark(take(s(X1_0), cons(X11_1, X22_1))) ->^+ a__U31(a__and(a__isNatIList(X22_1), and(isNat(mark(X1_0)), isNat(mark(X11_1)))), X22_1, mark(X1_0), mark(X11_1)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0,0]. The pumping substitution is [X1_0 / take(s(X1_0), cons(X11_1, X22_1))]. The result substitution is [ ]. The rewrite sequence mark(take(s(X1_0), cons(X11_1, X22_1))) ->^+ a__U31(a__and(a__isNatIList(X22_1), and(isNat(mark(X1_0)), isNat(mark(X11_1)))), X22_1, mark(X1_0), mark(X11_1)) gives rise to a decreasing loop by considering the right hand sides subterm at position [2]. The pumping substitution is [X1_0 / take(s(X1_0), cons(X11_1, X22_1))]. The result substitution is [ ]. ---------------------------------------- (10) BOUNDS(EXP, INF)