/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 244 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 445 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) active(f(X1, X2, X3)) -> f(X1, X2, active(X3)) f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) proper(c) -> ok(c) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(f(a, b, X)) -> mark(f(X, X, X)) active(f(X1, X2, X3)) -> f(X1, X2, active(X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(c) -> mark(a) active(c) -> mark(b) f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3)) proper(a) -> ok(a) proper(b) -> ok(b) proper(c) -> ok(c) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(c) -> mark(a) active(c) -> mark(b) f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3)) proper(a) -> ok(a) proper(b) -> ok(b) proper(c) -> ok(c) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4] transitions: c0() -> 0 mark0(0) -> 0 a0() -> 0 b0() -> 0 ok0(0) -> 0 active0(0) -> 1 f0(0, 0, 0) -> 2 proper0(0) -> 3 top0(0) -> 4 a1() -> 5 mark1(5) -> 1 b1() -> 6 mark1(6) -> 1 f1(0, 0, 0) -> 7 mark1(7) -> 2 a1() -> 8 ok1(8) -> 3 b1() -> 9 ok1(9) -> 3 c1() -> 10 ok1(10) -> 3 f1(0, 0, 0) -> 11 ok1(11) -> 2 proper1(0) -> 12 top1(12) -> 4 active1(0) -> 13 top1(13) -> 4 mark1(5) -> 13 mark1(6) -> 13 mark1(7) -> 7 mark1(7) -> 11 ok1(8) -> 12 ok1(9) -> 12 ok1(10) -> 12 ok1(11) -> 7 ok1(11) -> 11 proper2(5) -> 14 top2(14) -> 4 proper2(6) -> 14 active2(8) -> 15 top2(15) -> 4 active2(9) -> 15 active2(10) -> 15 a2() -> 16 mark2(16) -> 15 b2() -> 17 mark2(17) -> 15 a2() -> 18 ok2(18) -> 14 b2() -> 19 ok2(19) -> 14 proper3(16) -> 20 top3(20) -> 4 proper3(17) -> 20 active3(18) -> 21 top3(21) -> 4 active3(19) -> 21 a3() -> 22 ok3(22) -> 20 b3() -> 23 ok3(23) -> 20 active4(22) -> 24 top4(24) -> 4 active4(23) -> 24 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) active(f(X1, X2, X3)) -> f(X1, X2, active(X3)) f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) proper(c) -> ok(c) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) active(f(X1, X2, X3)) -> f(X1, X2, active(X3)) f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) proper(c) -> ok(c) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:b:mark:c:ok -> a:b:mark:c:ok f :: a:b:mark:c:ok -> a:b:mark:c:ok -> a:b:mark:c:ok -> a:b:mark:c:ok a :: a:b:mark:c:ok b :: a:b:mark:c:ok mark :: a:b:mark:c:ok -> a:b:mark:c:ok c :: a:b:mark:c:ok proper :: a:b:mark:c:ok -> a:b:mark:c:ok ok :: a:b:mark:c:ok -> a:b:mark:c:ok top :: a:b:mark:c:ok -> top hole_a:b:mark:c:ok1_0 :: a:b:mark:c:ok hole_top2_0 :: top gen_a:b:mark:c:ok3_0 :: Nat -> a:b:mark:c:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, f, proper, top They will be analysed ascendingly in the following order: f < active active < top f < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) active(f(X1, X2, X3)) -> f(X1, X2, active(X3)) f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) proper(c) -> ok(c) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:b:mark:c:ok -> a:b:mark:c:ok f :: a:b:mark:c:ok -> a:b:mark:c:ok -> a:b:mark:c:ok -> a:b:mark:c:ok a :: a:b:mark:c:ok b :: a:b:mark:c:ok mark :: a:b:mark:c:ok -> a:b:mark:c:ok c :: a:b:mark:c:ok proper :: a:b:mark:c:ok -> a:b:mark:c:ok ok :: a:b:mark:c:ok -> a:b:mark:c:ok top :: a:b:mark:c:ok -> top hole_a:b:mark:c:ok1_0 :: a:b:mark:c:ok hole_top2_0 :: top gen_a:b:mark:c:ok3_0 :: Nat -> a:b:mark:c:ok Generator Equations: gen_a:b:mark:c:ok3_0(0) <=> a gen_a:b:mark:c:ok3_0(+(x, 1)) <=> mark(gen_a:b:mark:c:ok3_0(x)) The following defined symbols remain to be analysed: f, active, proper, top They will be analysed ascendingly in the following order: f < active active < top f < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_a:b:mark:c:ok3_0(a), gen_a:b:mark:c:ok3_0(b), gen_a:b:mark:c:ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: f(gen_a:b:mark:c:ok3_0(a), gen_a:b:mark:c:ok3_0(b), gen_a:b:mark:c:ok3_0(+(1, 0))) Induction Step: f(gen_a:b:mark:c:ok3_0(a), gen_a:b:mark:c:ok3_0(b), gen_a:b:mark:c:ok3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) mark(f(gen_a:b:mark:c:ok3_0(a), gen_a:b:mark:c:ok3_0(b), gen_a:b:mark:c:ok3_0(+(1, n5_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) active(f(X1, X2, X3)) -> f(X1, X2, active(X3)) f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) proper(c) -> ok(c) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:b:mark:c:ok -> a:b:mark:c:ok f :: a:b:mark:c:ok -> a:b:mark:c:ok -> a:b:mark:c:ok -> a:b:mark:c:ok a :: a:b:mark:c:ok b :: a:b:mark:c:ok mark :: a:b:mark:c:ok -> a:b:mark:c:ok c :: a:b:mark:c:ok proper :: a:b:mark:c:ok -> a:b:mark:c:ok ok :: a:b:mark:c:ok -> a:b:mark:c:ok top :: a:b:mark:c:ok -> top hole_a:b:mark:c:ok1_0 :: a:b:mark:c:ok hole_top2_0 :: top gen_a:b:mark:c:ok3_0 :: Nat -> a:b:mark:c:ok Generator Equations: gen_a:b:mark:c:ok3_0(0) <=> a gen_a:b:mark:c:ok3_0(+(x, 1)) <=> mark(gen_a:b:mark:c:ok3_0(x)) The following defined symbols remain to be analysed: f, active, proper, top They will be analysed ascendingly in the following order: f < active active < top f < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(f(a, b, X)) -> mark(f(X, X, X)) active(c) -> mark(a) active(c) -> mark(b) active(f(X1, X2, X3)) -> f(X1, X2, active(X3)) f(X1, X2, mark(X3)) -> mark(f(X1, X2, X3)) proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) proper(a) -> ok(a) proper(b) -> ok(b) proper(c) -> ok(c) f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:b:mark:c:ok -> a:b:mark:c:ok f :: a:b:mark:c:ok -> a:b:mark:c:ok -> a:b:mark:c:ok -> a:b:mark:c:ok a :: a:b:mark:c:ok b :: a:b:mark:c:ok mark :: a:b:mark:c:ok -> a:b:mark:c:ok c :: a:b:mark:c:ok proper :: a:b:mark:c:ok -> a:b:mark:c:ok ok :: a:b:mark:c:ok -> a:b:mark:c:ok top :: a:b:mark:c:ok -> top hole_a:b:mark:c:ok1_0 :: a:b:mark:c:ok hole_top2_0 :: top gen_a:b:mark:c:ok3_0 :: Nat -> a:b:mark:c:ok Lemmas: f(gen_a:b:mark:c:ok3_0(a), gen_a:b:mark:c:ok3_0(b), gen_a:b:mark:c:ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_a:b:mark:c:ok3_0(0) <=> a gen_a:b:mark:c:ok3_0(+(x, 1)) <=> mark(gen_a:b:mark:c:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top