/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 333 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, N) -> activate(N) U41(tt, M, N) -> U42(isNat(activate(N)), activate(M), activate(N)) U42(tt, M, N) -> s(plus(activate(N), activate(M))) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N, 0) -> U31(isNat(N), N) plus(N, s(M)) -> U41(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, N) -> activate(N) U41(tt, M, N) -> U42(isNat(activate(N)), activate(M), activate(N)) U42(tt, M, N) -> s(plus(activate(N), activate(M))) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N, 0') -> U31(isNat(N), N) plus(N, s(M)) -> U41(isNat(M), M, N) 0' -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) activate(n__0) -> 0' activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, N) -> activate(N) U41(tt, M, N) -> U42(isNat(activate(N)), activate(M), activate(N)) U42(tt, M, N) -> s(plus(activate(N), activate(M))) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N, 0') -> U31(isNat(N), N) plus(N, s(M)) -> U41(isNat(M), M, N) 0' -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) activate(n__0) -> 0' activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(X) -> X Types: U11 :: tt -> n__0:n__plus:n__s -> tt tt :: tt U12 :: tt -> tt isNat :: n__0:n__plus:n__s -> tt activate :: n__0:n__plus:n__s -> n__0:n__plus:n__s U21 :: tt -> tt U31 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s U41 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s U42 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s s :: n__0:n__plus:n__s -> n__0:n__plus:n__s plus :: n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s n__0 :: n__0:n__plus:n__s n__plus :: n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s n__s :: n__0:n__plus:n__s -> n__0:n__plus:n__s 0' :: n__0:n__plus:n__s hole_tt1_3 :: tt hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s gen_n__0:n__plus:n__s3_3 :: Nat -> n__0:n__plus:n__s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: isNat, activate, U31, plus They will be analysed ascendingly in the following order: isNat = activate isNat = U31 isNat = plus activate = U31 activate = plus U31 = plus ---------------------------------------- (6) Obligation: TRS: Rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, N) -> activate(N) U41(tt, M, N) -> U42(isNat(activate(N)), activate(M), activate(N)) U42(tt, M, N) -> s(plus(activate(N), activate(M))) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N, 0') -> U31(isNat(N), N) plus(N, s(M)) -> U41(isNat(M), M, N) 0' -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) activate(n__0) -> 0' activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(X) -> X Types: U11 :: tt -> n__0:n__plus:n__s -> tt tt :: tt U12 :: tt -> tt isNat :: n__0:n__plus:n__s -> tt activate :: n__0:n__plus:n__s -> n__0:n__plus:n__s U21 :: tt -> tt U31 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s U41 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s U42 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s s :: n__0:n__plus:n__s -> n__0:n__plus:n__s plus :: n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s n__0 :: n__0:n__plus:n__s n__plus :: n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s n__s :: n__0:n__plus:n__s -> n__0:n__plus:n__s 0' :: n__0:n__plus:n__s hole_tt1_3 :: tt hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s gen_n__0:n__plus:n__s3_3 :: Nat -> n__0:n__plus:n__s Generator Equations: gen_n__0:n__plus:n__s3_3(0) <=> n__0 gen_n__0:n__plus:n__s3_3(+(x, 1)) <=> n__plus(gen_n__0:n__plus:n__s3_3(x), n__0) The following defined symbols remain to be analysed: activate, isNat, U31, plus They will be analysed ascendingly in the following order: isNat = activate isNat = U31 isNat = plus activate = U31 activate = plus U31 = plus ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: isNat(gen_n__0:n__plus:n__s3_3(n155_3)) -> tt, rt in Omega(1 + n155_3) Induction Base: isNat(gen_n__0:n__plus:n__s3_3(0)) ->_R^Omega(1) tt Induction Step: isNat(gen_n__0:n__plus:n__s3_3(+(n155_3, 1))) ->_R^Omega(1) U11(isNat(activate(gen_n__0:n__plus:n__s3_3(n155_3))), activate(n__0)) ->_R^Omega(1) U11(isNat(gen_n__0:n__plus:n__s3_3(n155_3)), activate(n__0)) ->_IH U11(tt, activate(n__0)) ->_R^Omega(1) U11(tt, n__0) ->_R^Omega(1) U12(isNat(activate(n__0))) ->_R^Omega(1) U12(isNat(n__0)) ->_R^Omega(1) U12(tt) ->_R^Omega(1) tt We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, N) -> activate(N) U41(tt, M, N) -> U42(isNat(activate(N)), activate(M), activate(N)) U42(tt, M, N) -> s(plus(activate(N), activate(M))) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N, 0') -> U31(isNat(N), N) plus(N, s(M)) -> U41(isNat(M), M, N) 0' -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) activate(n__0) -> 0' activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(X) -> X Types: U11 :: tt -> n__0:n__plus:n__s -> tt tt :: tt U12 :: tt -> tt isNat :: n__0:n__plus:n__s -> tt activate :: n__0:n__plus:n__s -> n__0:n__plus:n__s U21 :: tt -> tt U31 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s U41 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s U42 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s s :: n__0:n__plus:n__s -> n__0:n__plus:n__s plus :: n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s n__0 :: n__0:n__plus:n__s n__plus :: n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s n__s :: n__0:n__plus:n__s -> n__0:n__plus:n__s 0' :: n__0:n__plus:n__s hole_tt1_3 :: tt hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s gen_n__0:n__plus:n__s3_3 :: Nat -> n__0:n__plus:n__s Generator Equations: gen_n__0:n__plus:n__s3_3(0) <=> n__0 gen_n__0:n__plus:n__s3_3(+(x, 1)) <=> n__plus(gen_n__0:n__plus:n__s3_3(x), n__0) The following defined symbols remain to be analysed: isNat They will be analysed ascendingly in the following order: isNat = activate isNat = U31 isNat = plus activate = U31 activate = plus U31 = plus ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: U11(tt, V2) -> U12(isNat(activate(V2))) U12(tt) -> tt U21(tt) -> tt U31(tt, N) -> activate(N) U41(tt, M, N) -> U42(isNat(activate(N)), activate(M), activate(N)) U42(tt, M, N) -> s(plus(activate(N), activate(M))) isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N, 0') -> U31(isNat(N), N) plus(N, s(M)) -> U41(isNat(M), M, N) 0' -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) activate(n__0) -> 0' activate(n__plus(X1, X2)) -> plus(X1, X2) activate(n__s(X)) -> s(X) activate(X) -> X Types: U11 :: tt -> n__0:n__plus:n__s -> tt tt :: tt U12 :: tt -> tt isNat :: n__0:n__plus:n__s -> tt activate :: n__0:n__plus:n__s -> n__0:n__plus:n__s U21 :: tt -> tt U31 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s U41 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s U42 :: tt -> n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s s :: n__0:n__plus:n__s -> n__0:n__plus:n__s plus :: n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s n__0 :: n__0:n__plus:n__s n__plus :: n__0:n__plus:n__s -> n__0:n__plus:n__s -> n__0:n__plus:n__s n__s :: n__0:n__plus:n__s -> n__0:n__plus:n__s 0' :: n__0:n__plus:n__s hole_tt1_3 :: tt hole_n__0:n__plus:n__s2_3 :: n__0:n__plus:n__s gen_n__0:n__plus:n__s3_3 :: Nat -> n__0:n__plus:n__s Lemmas: isNat(gen_n__0:n__plus:n__s3_3(n155_3)) -> tt, rt in Omega(1 + n155_3) Generator Equations: gen_n__0:n__plus:n__s3_3(0) <=> n__0 gen_n__0:n__plus:n__s3_3(+(x, 1)) <=> n__plus(gen_n__0:n__plus:n__s3_3(x), n__0) The following defined symbols remain to be analysed: activate, U31, plus They will be analysed ascendingly in the following order: isNat = activate isNat = U31 isNat = plus activate = U31 activate = plus U31 = plus