/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 35 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: natsFrom(N) -> cons(N, n__natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, activate(XS)), N, X, activate(XS)) u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> activate(XS) sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) natsFrom(X) -> n__natsFrom(X) activate(n__natsFrom(X)) -> natsFrom(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: natsFrom(N) -> cons(N, n__natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, activate(XS)), N, X, activate(XS)) u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> activate(XS) sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) natsFrom(X) -> n__natsFrom(X) activate(n__natsFrom(X)) -> natsFrom(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence splitAt(s(N), cons(X, XS)) ->^+ u(splitAt(N, XS), N, X, activate(XS)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [N / s(N), XS / cons(X, XS)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: natsFrom(N) -> cons(N, n__natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, activate(XS)), N, X, activate(XS)) u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> activate(XS) sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) natsFrom(X) -> n__natsFrom(X) activate(n__natsFrom(X)) -> natsFrom(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: natsFrom(N) -> cons(N, n__natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, activate(XS)), N, X, activate(XS)) u(pair(YS, ZS), N, X, XS) -> pair(cons(activate(X), YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> activate(XS) sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) natsFrom(X) -> n__natsFrom(X) activate(n__natsFrom(X)) -> natsFrom(X) activate(X) -> X S is empty. Rewrite Strategy: FULL