/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 11 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 124 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 417 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 82 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 108 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 109 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 111 ms] (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 133 ms] (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 50 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 136 ms] (32) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0) active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0)) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0)) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0)) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0) -> ok(0) proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0) active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0)) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0)) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0)) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(tt) -> ok(tt) proper(0) -> ok(0) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(tt) -> ok(tt) proper(0) -> ok(0) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] transitions: mark0(0) -> 0 tt0() -> 0 ok0(0) -> 0 00() -> 0 active0(0) -> 0 U110(0, 0) -> 1 U210(0, 0, 0) -> 2 s0(0) -> 3 plus0(0, 0) -> 4 U310(0) -> 5 U410(0, 0, 0) -> 6 x0(0, 0) -> 7 and0(0, 0) -> 8 proper0(0) -> 9 isNat0(0) -> 10 top0(0) -> 11 U111(0, 0) -> 12 mark1(12) -> 1 U211(0, 0, 0) -> 13 mark1(13) -> 2 s1(0) -> 14 mark1(14) -> 3 plus1(0, 0) -> 15 mark1(15) -> 4 U311(0) -> 16 mark1(16) -> 5 U411(0, 0, 0) -> 17 mark1(17) -> 6 x1(0, 0) -> 18 mark1(18) -> 7 and1(0, 0) -> 19 mark1(19) -> 8 tt1() -> 20 ok1(20) -> 9 01() -> 21 ok1(21) -> 9 U111(0, 0) -> 22 ok1(22) -> 1 U211(0, 0, 0) -> 23 ok1(23) -> 2 s1(0) -> 24 ok1(24) -> 3 plus1(0, 0) -> 25 ok1(25) -> 4 U311(0) -> 26 ok1(26) -> 5 U411(0, 0, 0) -> 27 ok1(27) -> 6 x1(0, 0) -> 28 ok1(28) -> 7 and1(0, 0) -> 29 ok1(29) -> 8 isNat1(0) -> 30 ok1(30) -> 10 proper1(0) -> 31 top1(31) -> 11 active1(0) -> 32 top1(32) -> 11 mark1(12) -> 12 mark1(12) -> 22 mark1(13) -> 13 mark1(13) -> 23 mark1(14) -> 14 mark1(14) -> 24 mark1(15) -> 15 mark1(15) -> 25 mark1(16) -> 16 mark1(16) -> 26 mark1(17) -> 17 mark1(17) -> 27 mark1(18) -> 18 mark1(18) -> 28 mark1(19) -> 19 mark1(19) -> 29 ok1(20) -> 31 ok1(21) -> 31 ok1(22) -> 12 ok1(22) -> 22 ok1(23) -> 13 ok1(23) -> 23 ok1(24) -> 14 ok1(24) -> 24 ok1(25) -> 15 ok1(25) -> 25 ok1(26) -> 16 ok1(26) -> 26 ok1(27) -> 17 ok1(27) -> 27 ok1(28) -> 18 ok1(28) -> 28 ok1(29) -> 19 ok1(29) -> 29 ok1(30) -> 30 active2(20) -> 33 top2(33) -> 11 active2(21) -> 33 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, s, plus, x, and, isNat, U11, U21, U31, U41, proper, top They will be analysed ascendingly in the following order: s < active plus < active x < active and < active isNat < active U11 < active U21 < active U31 < active U41 < active active < top s < proper plus < proper x < proper and < proper isNat < proper U11 < proper U21 < proper U31 < proper U41 < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: s, active, plus, x, and, isNat, U11, U21, U31, U41, proper, top They will be analysed ascendingly in the following order: s < active plus < active x < active and < active isNat < active U11 < active U21 < active U31 < active U41 < active active < top s < proper plus < proper x < proper and < proper isNat < proper U11 < proper U21 < proper U31 < proper U41 < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: s(gen_tt:mark:0':ok3_0(+(1, 0))) Induction Step: s(gen_tt:mark:0':ok3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) mark(s(gen_tt:mark:0':ok3_0(+(1, n5_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: s, active, plus, x, and, isNat, U11, U21, U31, U41, proper, top They will be analysed ascendingly in the following order: s < active plus < active x < active and < active isNat < active U11 < active U21 < active U31 < active U41 < active active < top s < proper plus < proper x < proper and < proper isNat < proper U11 < proper U21 < proper U31 < proper U41 < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: plus, active, x, and, isNat, U11, U21, U31, U41, proper, top They will be analysed ascendingly in the following order: plus < active x < active and < active isNat < active U11 < active U21 < active U31 < active U41 < active active < top plus < proper x < proper and < proper isNat < proper U11 < proper U21 < proper U31 < proper U41 < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_tt:mark:0':ok3_0(+(1, n437_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n437_0) Induction Base: plus(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b)) Induction Step: plus(gen_tt:mark:0':ok3_0(+(1, +(n437_0, 1))), gen_tt:mark:0':ok3_0(b)) ->_R^Omega(1) mark(plus(gen_tt:mark:0':ok3_0(+(1, n437_0)), gen_tt:mark:0':ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) plus(gen_tt:mark:0':ok3_0(+(1, n437_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n437_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: x, active, and, isNat, U11, U21, U31, U41, proper, top They will be analysed ascendingly in the following order: x < active and < active isNat < active U11 < active U21 < active U31 < active U41 < active active < top x < proper and < proper isNat < proper U11 < proper U21 < proper U31 < proper U41 < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: x(gen_tt:mark:0':ok3_0(+(1, n2049_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n2049_0) Induction Base: x(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b)) Induction Step: x(gen_tt:mark:0':ok3_0(+(1, +(n2049_0, 1))), gen_tt:mark:0':ok3_0(b)) ->_R^Omega(1) mark(x(gen_tt:mark:0':ok3_0(+(1, n2049_0)), gen_tt:mark:0':ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) plus(gen_tt:mark:0':ok3_0(+(1, n437_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n437_0) x(gen_tt:mark:0':ok3_0(+(1, n2049_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n2049_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: and, active, isNat, U11, U21, U31, U41, proper, top They will be analysed ascendingly in the following order: and < active isNat < active U11 < active U21 < active U31 < active U41 < active active < top and < proper isNat < proper U11 < proper U21 < proper U31 < proper U41 < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: and(gen_tt:mark:0':ok3_0(+(1, n3967_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n3967_0) Induction Base: and(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b)) Induction Step: and(gen_tt:mark:0':ok3_0(+(1, +(n3967_0, 1))), gen_tt:mark:0':ok3_0(b)) ->_R^Omega(1) mark(and(gen_tt:mark:0':ok3_0(+(1, n3967_0)), gen_tt:mark:0':ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) plus(gen_tt:mark:0':ok3_0(+(1, n437_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n437_0) x(gen_tt:mark:0':ok3_0(+(1, n2049_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n2049_0) and(gen_tt:mark:0':ok3_0(+(1, n3967_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n3967_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: isNat, active, U11, U21, U31, U41, proper, top They will be analysed ascendingly in the following order: isNat < active U11 < active U21 < active U31 < active U41 < active active < top isNat < proper U11 < proper U21 < proper U31 < proper U41 < proper proper < top ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: U11(gen_tt:mark:0':ok3_0(+(1, n6014_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n6014_0) Induction Base: U11(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b)) Induction Step: U11(gen_tt:mark:0':ok3_0(+(1, +(n6014_0, 1))), gen_tt:mark:0':ok3_0(b)) ->_R^Omega(1) mark(U11(gen_tt:mark:0':ok3_0(+(1, n6014_0)), gen_tt:mark:0':ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) plus(gen_tt:mark:0':ok3_0(+(1, n437_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n437_0) x(gen_tt:mark:0':ok3_0(+(1, n2049_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n2049_0) and(gen_tt:mark:0':ok3_0(+(1, n3967_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n3967_0) U11(gen_tt:mark:0':ok3_0(+(1, n6014_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n6014_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: U21, active, U31, U41, proper, top They will be analysed ascendingly in the following order: U21 < active U31 < active U41 < active active < top U21 < proper U31 < proper U41 < proper proper < top ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: U21(gen_tt:mark:0':ok3_0(+(1, n8345_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) -> *4_0, rt in Omega(n8345_0) Induction Base: U21(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) Induction Step: U21(gen_tt:mark:0':ok3_0(+(1, +(n8345_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) ->_R^Omega(1) mark(U21(gen_tt:mark:0':ok3_0(+(1, n8345_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) plus(gen_tt:mark:0':ok3_0(+(1, n437_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n437_0) x(gen_tt:mark:0':ok3_0(+(1, n2049_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n2049_0) and(gen_tt:mark:0':ok3_0(+(1, n3967_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n3967_0) U11(gen_tt:mark:0':ok3_0(+(1, n6014_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n6014_0) U21(gen_tt:mark:0':ok3_0(+(1, n8345_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) -> *4_0, rt in Omega(n8345_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: U31, active, U41, proper, top They will be analysed ascendingly in the following order: U31 < active U41 < active active < top U31 < proper U41 < proper proper < top ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: U31(gen_tt:mark:0':ok3_0(+(1, n12486_0))) -> *4_0, rt in Omega(n12486_0) Induction Base: U31(gen_tt:mark:0':ok3_0(+(1, 0))) Induction Step: U31(gen_tt:mark:0':ok3_0(+(1, +(n12486_0, 1)))) ->_R^Omega(1) mark(U31(gen_tt:mark:0':ok3_0(+(1, n12486_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (30) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) plus(gen_tt:mark:0':ok3_0(+(1, n437_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n437_0) x(gen_tt:mark:0':ok3_0(+(1, n2049_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n2049_0) and(gen_tt:mark:0':ok3_0(+(1, n3967_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n3967_0) U11(gen_tt:mark:0':ok3_0(+(1, n6014_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n6014_0) U21(gen_tt:mark:0':ok3_0(+(1, n8345_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) -> *4_0, rt in Omega(n8345_0) U31(gen_tt:mark:0':ok3_0(+(1, n12486_0))) -> *4_0, rt in Omega(n12486_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: U41, active, proper, top They will be analysed ascendingly in the following order: U41 < active active < top U41 < proper proper < top ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: U41(gen_tt:mark:0':ok3_0(+(1, n13818_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) -> *4_0, rt in Omega(n13818_0) Induction Base: U41(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) Induction Step: U41(gen_tt:mark:0':ok3_0(+(1, +(n13818_0, 1))), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) ->_R^Omega(1) mark(U41(gen_tt:mark:0':ok3_0(+(1, n13818_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Obligation: TRS: Rules: active(U11(tt, N)) -> mark(N) active(U21(tt, M, N)) -> mark(s(plus(N, M))) active(U31(tt)) -> mark(0') active(U41(tt, M, N)) -> mark(plus(x(N, M), N)) active(and(tt, X)) -> mark(X) active(isNat(0')) -> mark(tt) active(isNat(plus(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(isNat(x(V1, V2))) -> mark(and(isNat(V1), isNat(V2))) active(plus(N, 0')) -> mark(U11(isNat(N), N)) active(plus(N, s(M))) -> mark(U21(and(isNat(M), isNat(N)), M, N)) active(x(N, 0')) -> mark(U31(isNat(N))) active(x(N, s(M))) -> mark(U41(and(isNat(M), isNat(N)), M, N)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U21(X1, X2, X3)) -> U21(active(X1), X2, X3) active(s(X)) -> s(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(U31(X)) -> U31(active(X)) active(U41(X1, X2, X3)) -> U41(active(X1), X2, X3) active(x(X1, X2)) -> x(active(X1), X2) active(x(X1, X2)) -> x(X1, active(X2)) active(and(X1, X2)) -> and(active(X1), X2) U11(mark(X1), X2) -> mark(U11(X1, X2)) U21(mark(X1), X2, X3) -> mark(U21(X1, X2, X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) U31(mark(X)) -> mark(U31(X)) U41(mark(X1), X2, X3) -> mark(U41(X1, X2, X3)) x(mark(X1), X2) -> mark(x(X1, X2)) x(X1, mark(X2)) -> mark(x(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U21(X1, X2, X3)) -> U21(proper(X1), proper(X2), proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(U31(X)) -> U31(proper(X)) proper(0') -> ok(0') proper(U41(X1, X2, X3)) -> U41(proper(X1), proper(X2), proper(X3)) proper(x(X1, X2)) -> x(proper(X1), proper(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(isNat(X)) -> isNat(proper(X)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U21(ok(X1), ok(X2), ok(X3)) -> ok(U21(X1, X2, X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) U31(ok(X)) -> ok(U31(X)) U41(ok(X1), ok(X2), ok(X3)) -> ok(U41(X1, X2, X3)) x(ok(X1), ok(X2)) -> ok(x(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok U11 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok U21 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok U31 :: tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok U41 :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok x :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok isNat :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) plus(gen_tt:mark:0':ok3_0(+(1, n437_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n437_0) x(gen_tt:mark:0':ok3_0(+(1, n2049_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n2049_0) and(gen_tt:mark:0':ok3_0(+(1, n3967_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n3967_0) U11(gen_tt:mark:0':ok3_0(+(1, n6014_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n6014_0) U21(gen_tt:mark:0':ok3_0(+(1, n8345_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) -> *4_0, rt in Omega(n8345_0) U31(gen_tt:mark:0':ok3_0(+(1, n12486_0))) -> *4_0, rt in Omega(n12486_0) U41(gen_tt:mark:0':ok3_0(+(1, n13818_0)), gen_tt:mark:0':ok3_0(b), gen_tt:mark:0':ok3_0(c)) -> *4_0, rt in Omega(n13818_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top