/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__and(tt, X) -> mark(X) a__isNePal(__(I, __(P, I))) -> tt mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(and(X1, X2)) -> a__and(mark(X1), X2) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__and(X1, X2) -> and(X1, X2) a__isNePal(X) -> isNePal(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__and(tt, X) -> mark(X) a__isNePal(__(I, __(P, I))) -> tt mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(and(X1, X2)) -> a__and(mark(X1), X2) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__and(X1, X2) -> and(X1, X2) a__isNePal(X) -> isNePal(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(isNePal(X)) ->^+ a__isNePal(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / isNePal(X)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__and(tt, X) -> mark(X) a__isNePal(__(I, __(P, I))) -> tt mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(and(X1, X2)) -> a__and(mark(X1), X2) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__and(X1, X2) -> and(X1, X2) a__isNePal(X) -> isNePal(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__and(tt, X) -> mark(X) a__isNePal(__(I, __(P, I))) -> tt mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(and(X1, X2)) -> a__and(mark(X1), X2) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__and(X1, X2) -> and(X1, X2) a__isNePal(X) -> isNePal(X) S is empty. Rewrite Strategy: FULL