/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) SlicingProof [LOWER BOUND(ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 439 ms] (14) proven lower bound (15) LowerBoundPropagationProof [FINISHED, 0 ms] (16) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(X) -> g(n__h(n__f(X))) h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X) -> g(n__h(n__f(X))) h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[1, 2, 6, 7, 8, 9, 10, 11] {(1,2,[f_1|0, h_1|0, activate_1|0, n__f_1|1, n__h_1|1, g_1|1]), (1,6,[g_1|1]), (1,8,[h_1|1, n__h_1|2]), (1,9,[f_1|1, n__f_1|2]), (1,10,[g_1|2]), (2,2,[g_1|0, n__h_1|0, n__f_1|0]), (6,7,[n__h_1|1]), (7,2,[n__f_1|1]), (8,2,[activate_1|1, n__h_1|1, n__f_1|1, g_1|1]), (8,8,[h_1|1, n__h_1|2]), (8,9,[f_1|1, n__f_1|2]), (8,10,[g_1|2]), (9,2,[activate_1|1, n__h_1|1, n__f_1|1, g_1|1]), (9,8,[h_1|1, n__h_1|2]), (9,9,[f_1|1, n__f_1|2]), (9,10,[g_1|2]), (10,11,[n__h_1|2]), (11,9,[n__f_1|2])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(X) -> g(n__h(n__f(X))) h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: g/0 ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(X) -> g h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: f(X) -> g h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X Types: f :: g:n__h:n__f -> g:n__h:n__f g :: g:n__h:n__f h :: g:n__h:n__f -> g:n__h:n__f n__h :: g:n__h:n__f -> g:n__h:n__f n__f :: g:n__h:n__f -> g:n__h:n__f activate :: g:n__h:n__f -> g:n__h:n__f hole_g:n__h:n__f1_0 :: g:n__h:n__f gen_g:n__h:n__f2_0 :: Nat -> g:n__h:n__f ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: activate ---------------------------------------- (12) Obligation: TRS: Rules: f(X) -> g h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X Types: f :: g:n__h:n__f -> g:n__h:n__f g :: g:n__h:n__f h :: g:n__h:n__f -> g:n__h:n__f n__h :: g:n__h:n__f -> g:n__h:n__f n__f :: g:n__h:n__f -> g:n__h:n__f activate :: g:n__h:n__f -> g:n__h:n__f hole_g:n__h:n__f1_0 :: g:n__h:n__f gen_g:n__h:n__f2_0 :: Nat -> g:n__h:n__f Generator Equations: gen_g:n__h:n__f2_0(0) <=> g gen_g:n__h:n__f2_0(+(x, 1)) <=> n__h(gen_g:n__h:n__f2_0(x)) The following defined symbols remain to be analysed: activate ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: activate(gen_g:n__h:n__f2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: activate(gen_g:n__h:n__f2_0(+(1, 0))) Induction Step: activate(gen_g:n__h:n__f2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) h(activate(gen_g:n__h:n__f2_0(+(1, n4_0)))) ->_IH h(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(X) -> g h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X Types: f :: g:n__h:n__f -> g:n__h:n__f g :: g:n__h:n__f h :: g:n__h:n__f -> g:n__h:n__f n__h :: g:n__h:n__f -> g:n__h:n__f n__f :: g:n__h:n__f -> g:n__h:n__f activate :: g:n__h:n__f -> g:n__h:n__f hole_g:n__h:n__f1_0 :: g:n__h:n__f gen_g:n__h:n__f2_0 :: Nat -> g:n__h:n__f Generator Equations: gen_g:n__h:n__f2_0(0) <=> g gen_g:n__h:n__f2_0(+(x, 1)) <=> n__h(gen_g:n__h:n__f2_0(x)) The following defined symbols remain to be analysed: activate ---------------------------------------- (15) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (16) BOUNDS(n^1, INF)