/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 10 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 28 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 432 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 85 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 105 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 41 ms] (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(0)) -> mark(cons(0, f(s(0)))) active(f(s(0))) -> mark(f(p(s(0)))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(f(X)) -> f(proper(X)) proper(0) -> ok(0) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(f(0)) -> mark(cons(0, f(s(0)))) active(f(s(0))) -> mark(f(p(s(0)))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) proper(f(X)) -> f(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(0) -> ok(0) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(0) -> ok(0) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6] transitions: mark0(0) -> 0 00() -> 0 ok0(0) -> 0 active0(0) -> 0 f0(0) -> 1 cons0(0, 0) -> 2 s0(0) -> 3 p0(0) -> 4 proper0(0) -> 5 top0(0) -> 6 f1(0) -> 7 mark1(7) -> 1 cons1(0, 0) -> 8 mark1(8) -> 2 s1(0) -> 9 mark1(9) -> 3 p1(0) -> 10 mark1(10) -> 4 01() -> 11 ok1(11) -> 5 f1(0) -> 12 ok1(12) -> 1 cons1(0, 0) -> 13 ok1(13) -> 2 s1(0) -> 14 ok1(14) -> 3 p1(0) -> 15 ok1(15) -> 4 proper1(0) -> 16 top1(16) -> 6 active1(0) -> 17 top1(17) -> 6 mark1(7) -> 7 mark1(7) -> 12 mark1(8) -> 8 mark1(8) -> 13 mark1(9) -> 9 mark1(9) -> 14 mark1(10) -> 10 mark1(10) -> 15 ok1(11) -> 16 ok1(12) -> 7 ok1(12) -> 12 ok1(13) -> 8 ok1(13) -> 13 ok1(14) -> 9 ok1(14) -> 14 ok1(15) -> 10 ok1(15) -> 15 active2(11) -> 18 top2(18) -> 6 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(f(0')) -> mark(cons(0', f(s(0')))) active(f(s(0'))) -> mark(f(p(s(0')))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(f(X)) -> f(proper(X)) proper(0') -> ok(0') proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(f(0')) -> mark(cons(0', f(s(0')))) active(f(s(0'))) -> mark(f(p(s(0')))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(f(X)) -> f(proper(X)) proper(0') -> ok(0') proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:ok -> 0':mark:ok f :: 0':mark:ok -> 0':mark:ok 0' :: 0':mark:ok mark :: 0':mark:ok -> 0':mark:ok cons :: 0':mark:ok -> 0':mark:ok -> 0':mark:ok s :: 0':mark:ok -> 0':mark:ok p :: 0':mark:ok -> 0':mark:ok proper :: 0':mark:ok -> 0':mark:ok ok :: 0':mark:ok -> 0':mark:ok top :: 0':mark:ok -> top hole_0':mark:ok1_0 :: 0':mark:ok hole_top2_0 :: top gen_0':mark:ok3_0 :: Nat -> 0':mark:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, cons, f, s, p, proper, top They will be analysed ascendingly in the following order: cons < active f < active s < active p < active active < top cons < proper f < proper s < proper p < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(f(0')) -> mark(cons(0', f(s(0')))) active(f(s(0'))) -> mark(f(p(s(0')))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(f(X)) -> f(proper(X)) proper(0') -> ok(0') proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:ok -> 0':mark:ok f :: 0':mark:ok -> 0':mark:ok 0' :: 0':mark:ok mark :: 0':mark:ok -> 0':mark:ok cons :: 0':mark:ok -> 0':mark:ok -> 0':mark:ok s :: 0':mark:ok -> 0':mark:ok p :: 0':mark:ok -> 0':mark:ok proper :: 0':mark:ok -> 0':mark:ok ok :: 0':mark:ok -> 0':mark:ok top :: 0':mark:ok -> top hole_0':mark:ok1_0 :: 0':mark:ok hole_top2_0 :: top gen_0':mark:ok3_0 :: Nat -> 0':mark:ok Generator Equations: gen_0':mark:ok3_0(0) <=> 0' gen_0':mark:ok3_0(+(x, 1)) <=> mark(gen_0':mark:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, f, s, p, proper, top They will be analysed ascendingly in the following order: cons < active f < active s < active p < active active < top cons < proper f < proper s < proper p < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: cons(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b)) Induction Step: cons(gen_0':mark:ok3_0(+(1, +(n5_0, 1))), gen_0':mark:ok3_0(b)) ->_R^Omega(1) mark(cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(f(0')) -> mark(cons(0', f(s(0')))) active(f(s(0'))) -> mark(f(p(s(0')))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(f(X)) -> f(proper(X)) proper(0') -> ok(0') proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:ok -> 0':mark:ok f :: 0':mark:ok -> 0':mark:ok 0' :: 0':mark:ok mark :: 0':mark:ok -> 0':mark:ok cons :: 0':mark:ok -> 0':mark:ok -> 0':mark:ok s :: 0':mark:ok -> 0':mark:ok p :: 0':mark:ok -> 0':mark:ok proper :: 0':mark:ok -> 0':mark:ok ok :: 0':mark:ok -> 0':mark:ok top :: 0':mark:ok -> top hole_0':mark:ok1_0 :: 0':mark:ok hole_top2_0 :: top gen_0':mark:ok3_0 :: Nat -> 0':mark:ok Generator Equations: gen_0':mark:ok3_0(0) <=> 0' gen_0':mark:ok3_0(+(x, 1)) <=> mark(gen_0':mark:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, f, s, p, proper, top They will be analysed ascendingly in the following order: cons < active f < active s < active p < active active < top cons < proper f < proper s < proper p < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(f(0')) -> mark(cons(0', f(s(0')))) active(f(s(0'))) -> mark(f(p(s(0')))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(f(X)) -> f(proper(X)) proper(0') -> ok(0') proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:ok -> 0':mark:ok f :: 0':mark:ok -> 0':mark:ok 0' :: 0':mark:ok mark :: 0':mark:ok -> 0':mark:ok cons :: 0':mark:ok -> 0':mark:ok -> 0':mark:ok s :: 0':mark:ok -> 0':mark:ok p :: 0':mark:ok -> 0':mark:ok proper :: 0':mark:ok -> 0':mark:ok ok :: 0':mark:ok -> 0':mark:ok top :: 0':mark:ok -> top hole_0':mark:ok1_0 :: 0':mark:ok hole_top2_0 :: top gen_0':mark:ok3_0 :: Nat -> 0':mark:ok Lemmas: cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_0':mark:ok3_0(0) <=> 0' gen_0':mark:ok3_0(+(x, 1)) <=> mark(gen_0':mark:ok3_0(x)) The following defined symbols remain to be analysed: f, active, s, p, proper, top They will be analysed ascendingly in the following order: f < active s < active p < active active < top f < proper s < proper p < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_0':mark:ok3_0(+(1, n748_0))) -> *4_0, rt in Omega(n748_0) Induction Base: f(gen_0':mark:ok3_0(+(1, 0))) Induction Step: f(gen_0':mark:ok3_0(+(1, +(n748_0, 1)))) ->_R^Omega(1) mark(f(gen_0':mark:ok3_0(+(1, n748_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(f(0')) -> mark(cons(0', f(s(0')))) active(f(s(0'))) -> mark(f(p(s(0')))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(f(X)) -> f(proper(X)) proper(0') -> ok(0') proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:ok -> 0':mark:ok f :: 0':mark:ok -> 0':mark:ok 0' :: 0':mark:ok mark :: 0':mark:ok -> 0':mark:ok cons :: 0':mark:ok -> 0':mark:ok -> 0':mark:ok s :: 0':mark:ok -> 0':mark:ok p :: 0':mark:ok -> 0':mark:ok proper :: 0':mark:ok -> 0':mark:ok ok :: 0':mark:ok -> 0':mark:ok top :: 0':mark:ok -> top hole_0':mark:ok1_0 :: 0':mark:ok hole_top2_0 :: top gen_0':mark:ok3_0 :: Nat -> 0':mark:ok Lemmas: cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) f(gen_0':mark:ok3_0(+(1, n748_0))) -> *4_0, rt in Omega(n748_0) Generator Equations: gen_0':mark:ok3_0(0) <=> 0' gen_0':mark:ok3_0(+(x, 1)) <=> mark(gen_0':mark:ok3_0(x)) The following defined symbols remain to be analysed: s, active, p, proper, top They will be analysed ascendingly in the following order: s < active p < active active < top s < proper p < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_0':mark:ok3_0(+(1, n1231_0))) -> *4_0, rt in Omega(n1231_0) Induction Base: s(gen_0':mark:ok3_0(+(1, 0))) Induction Step: s(gen_0':mark:ok3_0(+(1, +(n1231_0, 1)))) ->_R^Omega(1) mark(s(gen_0':mark:ok3_0(+(1, n1231_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(f(0')) -> mark(cons(0', f(s(0')))) active(f(s(0'))) -> mark(f(p(s(0')))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(f(X)) -> f(proper(X)) proper(0') -> ok(0') proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:ok -> 0':mark:ok f :: 0':mark:ok -> 0':mark:ok 0' :: 0':mark:ok mark :: 0':mark:ok -> 0':mark:ok cons :: 0':mark:ok -> 0':mark:ok -> 0':mark:ok s :: 0':mark:ok -> 0':mark:ok p :: 0':mark:ok -> 0':mark:ok proper :: 0':mark:ok -> 0':mark:ok ok :: 0':mark:ok -> 0':mark:ok top :: 0':mark:ok -> top hole_0':mark:ok1_0 :: 0':mark:ok hole_top2_0 :: top gen_0':mark:ok3_0 :: Nat -> 0':mark:ok Lemmas: cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) f(gen_0':mark:ok3_0(+(1, n748_0))) -> *4_0, rt in Omega(n748_0) s(gen_0':mark:ok3_0(+(1, n1231_0))) -> *4_0, rt in Omega(n1231_0) Generator Equations: gen_0':mark:ok3_0(0) <=> 0' gen_0':mark:ok3_0(+(x, 1)) <=> mark(gen_0':mark:ok3_0(x)) The following defined symbols remain to be analysed: p, active, proper, top They will be analysed ascendingly in the following order: p < active active < top p < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':mark:ok3_0(+(1, n1815_0))) -> *4_0, rt in Omega(n1815_0) Induction Base: p(gen_0':mark:ok3_0(+(1, 0))) Induction Step: p(gen_0':mark:ok3_0(+(1, +(n1815_0, 1)))) ->_R^Omega(1) mark(p(gen_0':mark:ok3_0(+(1, n1815_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(f(0')) -> mark(cons(0', f(s(0')))) active(f(s(0'))) -> mark(f(p(s(0')))) active(p(s(X))) -> mark(X) active(f(X)) -> f(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(p(X)) -> p(active(X)) f(mark(X)) -> mark(f(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) p(mark(X)) -> mark(p(X)) proper(f(X)) -> f(proper(X)) proper(0') -> ok(0') proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(p(X)) -> p(proper(X)) f(ok(X)) -> ok(f(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) p(ok(X)) -> ok(p(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:ok -> 0':mark:ok f :: 0':mark:ok -> 0':mark:ok 0' :: 0':mark:ok mark :: 0':mark:ok -> 0':mark:ok cons :: 0':mark:ok -> 0':mark:ok -> 0':mark:ok s :: 0':mark:ok -> 0':mark:ok p :: 0':mark:ok -> 0':mark:ok proper :: 0':mark:ok -> 0':mark:ok ok :: 0':mark:ok -> 0':mark:ok top :: 0':mark:ok -> top hole_0':mark:ok1_0 :: 0':mark:ok hole_top2_0 :: top gen_0':mark:ok3_0 :: Nat -> 0':mark:ok Lemmas: cons(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) f(gen_0':mark:ok3_0(+(1, n748_0))) -> *4_0, rt in Omega(n748_0) s(gen_0':mark:ok3_0(+(1, n1231_0))) -> *4_0, rt in Omega(n1231_0) p(gen_0':mark:ok3_0(+(1, n1815_0))) -> *4_0, rt in Omega(n1815_0) Generator Equations: gen_0':mark:ok3_0(0) <=> 0' gen_0':mark:ok3_0(+(x, 1)) <=> mark(gen_0':mark:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top